
Using the dBUG
Monitor Firmware on
the MPC562BC
Board

Rev. 0.1, 10/2002
The MPC562BC single board computer has a resident firmware package that provides a
self-contained programming and operating environment. The firmware, named dBUG,
provides the user with monitor/debug interface, inline assembler and disassembly, program
download, register and memory manipulation, and I/O control functions. This document is a
how-to-use description of the dBUG package, including the user interface and command
structure.

1.0 What Is dBUG?
dBUG is a traditional ROM monitor/debugger that offers a comfortable and intuitive
command line interface that can be used to download and execute code. It contains all the
primary features needed in a debugger to create a useful debugging environment.

The firmware (stored in the upper 1MByte of the Flash ROM device) provides a
self-contained programming and operating environment. dBUG interacts with the user
through pre-defined commands that are entered via the terminal. These commands are defined
in Section 2.4, “Commands”.

The user interface to dBUG is the command line. A number of features have been
implemented to achieve an easy and intuitive command line interface.

dBUG assumes that an 80x24 character dumb-terminal is utilized to connect to the debugger.
For serial communications, dBUG requires eight data bits, no parity, and one stop bit, 8N1
with no flow control. Xon/Xoff flow control should be turned on for downloading data to the
board using the DL and DLDBUG commands. The default baud rate is 19200 but can be
changed after the power-up.

The command line prompt is “dBUG> “. Any dBUG command may be entered from this
prompt. dBUG does not allow command lines to exceed 80 characters. Wherever possible,
dBUG displays data in 80 columns or less. dBUG echoes each character as it is typed,
eliminating the need for any “local echo” on the terminal side.

In general, dBUG is not case sensitive. Commands may be entered either in upper or lower
case, depending upon the user’s equipment and preference. Only symbol names require that
the exact case be used.

System Power-up
Most commands can be recognized by using an abbreviated name. For instance, entering “he” is the same
as entering “help”. Thus, it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. dBUG recognizes
this and allows for repeated execution of these commands with minimal typing. After a command is
entered, simply press <RETURN> or <ENTER> to invoke the command again. The command is executed
as if no command line parameters were provided.

An additional function called the "System Call" allows the user program to utilize various routines within
dBUG. The System Call is discussed at the end of this chapter.

The operational mode of dBUG is demonstrated in Figure 1. After the system initialization, the board waits
for a command-line input from the user terminal. When a proper command is entered, the operation
continues in one of the two basic modes. If the command causes execution of the user program, the dBUG
firmware may or may not be re-entered, at the discretion of the user’s program. For the alternate case, the
command will be executed under control of the dBUG firmware, and after command completion, the system
returns to command entry mode.

During command execution, additional user input may be required depending on the command function.

For commands that accept an optional <width> to modify the memory access size, the valid values are:

• B 8-bit (byte) access

• H 16-bit (half-word) access

• W 32-bit (word) access

When no <width> option is provided, the default width is .W, 32-bit.

The core MPC500 register set is maintained by dBUG. These are listed below:

• GPR0-GPR31

• IP (SRR0 is IP)

• MSR (SRR1 is MSR)

• CR, XER, LR, CTR, DSISR, DAR, DEC

All control registers on MPC500 core are not readable by the supervisor-programming model, and thus not
accessible via dBUG. User code may change these registers, but caution must be exercised as changes may
render dBUG inoperable.

A reference to “SP” (stack pointer) actually refers to general purpose address register one, “GPR1."

2.0 Operational Procedure

2.1 System Power-up
• Be sure the power supply is connected properly prior to power-up.

• Make sure the terminal is connected to the RS232 DB-9 connector.

• Make sure the IP bit is set (CFG1 - this is hardwired by default). This will cause the board to boot
out of external flash (where the dBUG code resides).

• Turn power on to the board.
2 MOTOROLA

System Initialization
Figure 1 shows the dUBG operational mode.

Figure 1. Flow Diagram of dBUG Operational Mode.

2.2 System Initialization
The act of powering up the board will initialize the system. The processor is reset and dBUG is invoked.

dBUG performs the following configurations of internal resources during the initialization. The IP bit is set
by default, placing the vector table at 0xFFF0_0000 (external Flash). To take over an exception vector, the
MOTOROLA 3
Motorola Confidential Proprietary

System Initialization
user places the address of the exception handler in the appropriate vector in the vector table located at
0xFF00_0000. dBUG allows users to write their own exception handlers for the following exceptions:
External Interrupt, Alignment, Program Floating-point unavailable, Decrementer, and Floating-point assist.
dBUG will look in the User Exception Space (0xFF00_0000 - 0xFF00_1FFF) to see if there is user code
there. If there is, it will execute the user’s exception handler, if there is not (memory is erased to be
0xFFFF_FFFF), dBUG will execute it’s own exception handlers (located in Flash at 0xFFF0_0000 -
0xFFF0_1FFF).

The Software Watchdog Timer is disabled and internal timers are placed in a stop condition. Interrupt
controller registers are initialized with unique interrupt level/priority pairs. Please refer to the dBUG source
files on the PowerPC website (www.motorola.com/powerpc) for the complete initialization code sequence.

After initialization, the terminal will display:

Part Number: 0x35
MaskNum: 0x20

Copyright 1995-2003 Motorola, Inc. All Rights Reserved.
MPC562 MPC562BC Firmware v3b.1a.1a (Build 1 on Oct 28 2002 08:54:53)

Enter 'help' for help.

dBUG>

If you did not get this response check the setup, refer to Section 2.1, “System Power-up”.

Other means can be used to re-initialize the MPC562BC Computer Board firmware. These means are
discussed in the following paragraphs.

2.2.1 Hard RESET Button
Pressing the Hard RESET button (HARD_RESET) causes all processes to terminate, resets the MPC562
processor and board logic and restarts the dBUG firmware. Pressing the HARD_RESET button would be
the appropriate action if all else fails.

2.2.2 Non-Maskable Interrupt Button
SWITCH1 can be used as a non-maskable interrupt (NMI) button. It is available for the user to use in their
code as an input if the appropriate jumper on JP3 is removed. The NMI function causes an interrupt of the
present processing (a level 0 interrupt on MPC562) and gives control to the dBUG firmware. This action
differs from RESET in that no processor register or memory contents are changed, the processor and
peripherals are not reset, and dBUG is not restarted. Also, in response to depressing the NMI button, the
contents of the MPC562 core internal registers are displayed.

The NMI function is most appropriate when software is being debugged. The user can interrupt the
processor without destroying the present state of the system. This is accomplished by forcing a
non-maskable interrupt that will call a dBUG routine that will save the current state of the registers to
shadow registers in the monitor for display to the user. The user will be returned to the ROM monitor
prompt after exception handling.
4 MOTOROLA

Command Line Usage
2.2.3 Software Reset Command
dBUG does have a command that causes dBUG to restart as if a hardware reset was invoked. The command
is "RESET".

2.3 Command Line Usage
The user interface to dBUG is the command line. A number of features have been implemented to achieve
an easy and intuitive command line interface.

dBUG assumes that an 80x24 ASCII character dumb terminal is used to connect to the debugger. For serial
communications, dBUG requires eight data bits, no parity, one stop bit (8N1), and Xon/Xoff flow control
turned off. Xon/Xoff flow control should be turned on when downloading data to the board. The baud rate
default is 19200 bps — a speed commonly available from workstations, personal computers and dedicated
terminals.

The command line prompt is: dBUG>

Any dBUG command may be entered from this prompt. dBUG does not allow command lines to exceed 80
characters. Wherever possible, dBUG displays data in 80 columns or less. dBUG echoes each character as
it is typed, eliminating the need for any local echo on the terminal side.

The <Backspace> and <Delete> keys are recognized as rub-out keys for correcting typographical mistakes.

Command lines may be recalled using the <Control> U, <Control> D and <Control> R key sequences.
<Control> U and <Control> D cycle up and down through previous command lines. <Control> R recalls
and executes the last command line.

In general, dBUG is not case-sensitive. Commands may be entered either in uppercase or lowercase,
depending upon the user’s equipment and preference. Only symbol names require that the exact case be
used.

Most commands can be recognized by using an abbreviated name. For instance, entering h is the same as
entering help. Thus it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. dBUG recognizes
this and allows for repeated execution of these commands with minimal typing. After a command is entered,
press the <Return> or <Enter> key to invoke the command again. The command is executed as if no
command line parameters were provided.

2.4 Commands
This section lists the commands that are available with all versions of dBUG. Some board or CPU
combinations may use additional commands not listed below.

Table 1. dBUG Command Summary

MNEMONIC SYNTAX DESCRIPTION

ASM asm <<addr> stmt> Assemble

BC bc addr1 addr2 length Block Compare
BF bf <width> begin end data <inc> Block Fill
BM bm begin end dest Block Move

BR br addr <-r> <-c count> <-t trigger> Breakpoint
BS bs <width> begin end data Block Search
MOTOROLA 5
Motorola Confidential Proprietary

Commands
DC dc value Data Convert

DI di<addr> Disassemble
DL dl <offset> Download Serially
DLDBUG dldbug Download dBUG

FL fl <command> dest <src> size Erase/Program External
Flash

GO go <addr> Execute
GT gt addr Execute To
HBR hbr addr <-r> Hardware Breakpoint

HELP help <command> Help
IRD ird <module.register> Internal Register Display
IRM irm module.register data Internal Register Modify

LR lr<width> addr Loop Read
LW lw<width> addr data Loop Write
MD md<width> <begin> <end> Memory Display

MM mm<width> addr <data> Memory Modify
MMAP mmap Memory Map Display
RD rd <reg> Register Display

RM rm reg data Register Modify
RESET reset Reset
SD sd Stack Dump

SET set <option value> Set Configurations
SHOW show <option> Show Configurations
STEP step Step (Over)

SYMBOL symbol <symb> <-a symb value> <-r symb> <-C|l|s>Symbol Management
TRACE trace <num> Trace (Into)
VERSION version Show Version

Table 1. dBUG Command Summary (continued)

MNEMONIC SYNTAX DESCRIPTION
6 MOTOROLA

Commands
ASM Assembler
Usage: ASM <<addr> stmt>

The ASM command is a primitive assembler. The <stmt> is assembled and the resulting code placed at
<addr>. This command has an interactive and non-interactive mode of operation.

The value for address <addr> may be an absolute address specified as a hexadecimal value, or a symbol
name. The value for stmt must be valid assembler mnemonics for the CPU.

For the interactive mode, the user enters the command and the optional <addr>. If the address is not
specified, then the last address is used. The memory contents at the address are disassembled, and the user
prompted for the new assembly. If valid, the new assembly is placed into memory, and the address
incremented accordingly. If the assembly is not valid, then memory is not modified, and an error message
produced. In either case, memory is disassembled and the process repeats.

The user may press the <Enter> or <Return> key to accept the current memory contents and skip to the next
instruction, or a enter period to quit the interactive mode.

In the non-interactive mode, the user specifies the address and the assembly statement on the command line.
The statement is the assembled, and if valid, placed into memory, otherwise an error message is produced.

Examples:

To place a NOP instruction at address 0xFF01_0000, the command is:

asm FF010000 nop

To interactively assembly memory at address 0xFF40_0000, the command is:

asm FF400000
MOTOROLA 7
Motorola Confidential Proprietary

Commands
BC Block Compare
Usage: BC addr1 addr2 length

The BC command compares two contiguous blocks of memory on a byte by byte basis. The first block starts
at address addr1 and the second starts at address addr2, both of length bytes.

If the blocks are not identical, the address of the first mismatch is displayed. The value for addresses addr1
and addr2 may be an absolute address specified as a hexadecimal value or a symbol name. The value for
length may be a symbol name or a number converted according to the user defined radix (hexadecimal by
default).

Example:

To verify that the data starting at 0xFFF2_0000 and ending at 0xFFF3_0000 is identical to the data starting
at 0xFFF0_0000, the command is:

bc FFF20000 FFF00000 10000
8 MOTOROLA

Commands
BF Block Fill
Usage: BF<width> begin end data <inc>

The BF command fills a contiguous block of memory starting at address begin, stopping at address end, with
the value data. <Width> modifies the size of the data that is written. If no <width> is specified, the default
of word sized data is used.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the
user-defined radix, normally hexadecimal.

The optional value <inc> can be used to increment (or decrement) the data value during the fill.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly-aligned memory accesses.

Examples:

To fill a memory block starting at 0xFF02_0000 and ending at 0xFF04_0000 with the value 0x1234, the
command is:

bf FF020000 FF040000 1234

To fill a block of memory starting at 0xFFF20000 and ending at 0xFF04_0000 with a byte value of 0xAB,
the command is:

bf.b FF020000 FF040000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and bss_end), the command
is:

bf bss_start bss_end 0

To fill a block of memory starting at 0xFFF2_0000 and ending at 0xFF04_0000 with data that increments
by 2 for each <width>, the command is:

bf FF020000 FF040000 0 2
MOTOROLA 9
Motorola Confidential Proprietary

Commands
BM Block Move
Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address begin and stopping at address
end to the new address dest. The BM command copies memory as a series of bytes, and does not alter the
original block.

The values for addresses begin, end, and dest may be absolute addresses specified as hexadecimal values,
or symbol names. If the destination address overlaps the block defined by begin and end, an error message
is produced and the command exits.

Examples:

To copy a block of memory starting at 0xFF04_0000 and ending at 0xFF07_0000 to the location
0xFF00_2000, the command is:

bm FF040000 FF070000 FF002000

To copy the target code’s data section (defined by the symbols data_start and data_end) to 0xFF00_2000,
the command is:

bm data_start data_end FF002000
10 MOTOROLA

Commands
BR Breakpoints
Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes software breakpoints at address addr. The value for addr may be an
absolute address specified as a hexadecimal value, or a symbol name.

If no argument is provided to the BR command, a listing of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no address is specified
in conjunction with the -r option, then all breakpoints are removed.

Each time a breakpoint is encountered during the execution of target code, its count value is incremented by
one. By default, the initial count value for a breakpoint is zero, but the -c option allows setting the initial
count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is compared
against the trigger value. If the count value is equal to or greater than the trigger value, a breakpoint is
encountered and control returned to dBUG. By default, the initial trigger value for a breakpoint is one, but
the -t option allows setting the initial trigger for the breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are initialized to the
values specified by the -c or -t option.

Examples:

To set a breakpoint at the C function main() (symbol _main; see “symbol” command), the
command is:

br _main

To set a breakpoint at 0x003F_A000, the command is:

br 3fA000

When the target code is executed and the processor reaches 0x003F_8000, control will be returned to dBUG.

To set a breakpoint at the address 0x003F_A000 and set its trigger value to 3, the command is:

br 3fA000 -t 3

When the target code is executed, the processor must attempt to execute the instruction at 0x003F_A000 a
third time before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r
MOTOROLA 11
Motorola Confidential Proprietary

Commands
BS Block Search
Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin, stopping at address end,
for the value data. <Width> modifies the size of the data that is compared during the search. If no <width>
is specified, the default of word sized data is used.

The values for addresses begin and end may be absolute addresses specified as hexadecimal values, or
symbol names. The value for data may be a symbol name or a number converted according to the
user-defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly-aligned memory accesses.

Examples:

To search for the 32-bit value 0x1234_5678 in the memory block starting at 0xFFF4_0000 and ending at
0xFFF7_0000:

bs FFF40000 FFF70000 12345678

This reads the 32-bit word located at 0x0004_0000 and compares it against the 32-bit value 0x1234_5678.
If no match is found, then the address is incremented to 0x0004_0002 and the next 32-bit value is read and
compared.

To search for the 16-bit value 0x1234 in the memory block starting at 0xFFF4_0000 and ending at
0xFFF7_0000:

bs 40000 FFF70000 1234

This reads the 32-bit word located at 0xFFF4_0000 and compares it against the 16-bit value 0x0000_1234.
If no match is found, then the address is incremented to 0xFFF4_0004 and the next 32-bit value is read and
compared.
12 MOTOROLA

Commands
DC Data Conversion
Usage: DC data

The DC command displays the hexadecimal or decimal value data in hexadecimal, binary, and decimal
notation.

The value for data may be a symbol name or an absolute value. If an absolute value passed into the DC
command is prefixed by ‘0x’, then data is interpreted as a hexadecimal value. Otherwise data is interpreted
as a decimal value.

All values are treated as 32-bit quantities.

Examples:

To display the decimal and binary equivalent of 0x1234, the command is:

dc 0x1234

To display the hexadecimal and binary equivalent of 1234, the command is:

dc 1234
13 MOTOROLA

Commands
DI Disassemble
Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a more
meaningful disassembly. This is especially useful for branch target addresses and subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no address is provided to
the DI command, then the DI command uses the address of the last opcode that was disassembled.

The DI command is repeatable.

Examples:

To disassemble code that starts at 0xFFF4_0000, the command is:

di FFF40000

To disassemble code of the C function main(), the command is:

di _main
14 MOTOROLA

Commands
DL Download Console
Usage: DL <offset>

The DL command performs an S-record download of data obtained from the console, typically through a
serial port. The value for offset is converted according to the user-defined radix, normally hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset.

The DL command checks the destination download address for validity. If the destination is an address
outside the defined downloadable spaces, then an error message is displayed and downloading aborted.

If the S-record file contains the entry point address, then the program counter is set to reflect this address.

The data should be in the format of a .s19 (S-Record) file. For this board, the downloadable spaces are
external flash (0xFF00_0000 - 0xFF00_1FFF for the user’s exception table and 0xFF00_2000 -
0xFFEF_FFFF for user code) and internal SRAM (0x003f_A000 - 0x003F_FFFF).

Xon/Xoff flow control needs to be turned on in the terminal window to download data.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port, and add an offset to the destination address of 0x40,
the command is:

dl 0x40
15 MOTOROLA

Commands
DLDBUG Download dBUG
Usage: DLDBUG

The DLDBUG command will download the dBUG monitor to the MPC562BC board. First it will erase all
sectors of Flash that dBUG occupies, then it will download the code through the serial port. Upon asking if
the user is sure they want to do this, the user should respond by typing “yes” if they want to continue. The
DLDBUG command will work at baud rates up to and including 57600.

Xon/Xoff flow control needs to be turned on in the terminal window to download data.

To download the dBUG monitor to the board, the command is:

dldbug
16 MOTOROLA

Commands
FL Erase/Program Flash
Usage: FL

FL (e)rase addr bytes

FL (w)rite dest src bytes

The FL command is used to erase the external flash, write to external flash, and display flash device
information. Erase and Write operations must be done in sector blocks. dBUG assumes that the user has
erased enough memory before writing to it. The destination address must be word (4byte) aligned and the
byte count must be in word (4byte) multiples.

Examples:

To view the flash device information, the command is:

fl

To erase 0x20000 bytes of flash starting at 0xFF000000, the command is:

fl erase ff000000 20000

To copy 0x40 bytes of data from internal SRAM (0x3FA000) to external flash at 0xFF000000, the command
is:

fl write ff000000 3fa000 0x40
17 MOTOROLA

Commands
GO Execute
Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

If no argument is provided, the GO command begins executing instructions at the current program counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target code, and the
context is switched to the target program. Control is only regained when the target code encounters a
breakpoint, illegal instruction, or other exception which causes control to be handed back to dBUG.

The GO command is repeatable.

Examples:

To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0xFF04_0000, the command is:

go FF040000
18 MOTOROLA

Commands
GT Execute To
Usage: GT addr

The GT command inserts a temporary software breakpoint at addr and then executes target code starting at
the current program counter. The value for addr may be an absolute address specified as a hexadecimal
value, or a symbol name.This command only works when executing code in SRAM.

When the GT command is executed, all breakpoints are inserted into the target code, and the context is
switched to the target program. Control is only regained when the target code encounters a breakpoint,
illegal instruction, or other exception which causes control to be handed back to dBUG.

Examples:

To execute code up to the C function bench(), the command is:

gt _bench
19 MOTOROLA

Commands
HR Hardware Breakpoints
Usage: HBR addr <-r>

The HBR command inserts or removes hardware breakpoints at address addr. The value for addr may be an
absolute address specified as a hexadecimal value. Note that the maximum number of hardware breakpoints
allowed is 4.

If no argument is provided to the HBR command, a listing of all defined hardware breakpoints is displayed.

The -r option to the HBR command removes a breakpoint defined at address addr. If no address is specified
in conjunction with the -r option, then all hardware breakpoints are removed.

Examples:

To set a breakpoint at the address 0x003F_8000, the command is:

hbr 3f8000

When the target code is executed and the processor reaches 0x003F_8000, control will be returned to dBUG.

To remove all hardware breakpoints, the command is:

hbr -r
20 MOTOROLA

Commands
HELP Help
Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In addition, the
address of where user code may start is given. If command is provided, then a brief listing of the syntax of
the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

To obtain help on the breakpoint command, the command is:

help br
21 MOTOROLA

Commands
IRD Internal Register Display
Usage: IRD <module.register>

This command displays the internal registers of different modules inside the MPC500. In the command line,
module refers to the module name where the register is located and register refers to the specific register to
display.

The registers are organized according to the module to which they belong. The available modules on the
MPC500 are USIU, TPU_A, TPU_B, QADC_A, QADC_B, QSMCM_A, MIOS14, CAN_A, CAN_B,
CAN_C, UIMB, CALRAM_A, CALRAM_B, DPTRAM8K, and PPM. Refer to the MPC562 user’s manual
for more information on these modules and the registers they contain.

Example:

ird usiu.plprcrk
22 MOTOROLA

Commands
IRM Internal Register Modify
Usage: IRM module.register data

This command modifies the contents of the internal registers of different modules inside the MPC500. In
the command line, module refers to the module name where the register is located and register refers to the
specific register to modify. The data parameter specifies the new value to be written into the register.

The registers are organized according to the module to which they belong. The available modules on the
MPC500 are USIU, TPU_A, TPU_B, QADC_A, QADC_B, QSMCM_A, MIOS14, CAN_A. Refer to the
MPC564 user’s manual for more information on these modules and the registers they contain.

Example:

To modify the PCPRCR in the USIU to the value 0x0091_4000, the command is:

irm usiu.plprcr 914000
23 MOTOROLA

Commands
LR Loop Read
Usage: LR<width> addr

The LR command continually reads the data at addr until a key is pressed. The optional <width> specifies
the size of the data to be read. If no <width> is specified, the command defaults to reading word sized data.

Example:

To continually read the word data from address 0xFFF2_0000, the command is:

lr FFF20000
24 MOTOROLA

Commands
LW Loop Write
Usage: LW<width> addr data

The LW command continually writes data to addr. The optional width specifies the size of the access to
memory. The default access size is a word.

Examples:

To continually write the data 0x1234_5678 to address 0xFFF2_0000, the command is:

lw FFF20000 12345678

Note that the following command writes 0x78 into memory:

lw.b FFF20000 12345678
25 MOTOROLA

Commands
MD Memory Display
Usage: MD<width> <begin> <end>

The MD command displays a contiguous block of memory starting at address begin and stopping at address
end. The values for addresses begin and end may be absolute addresses specified as hexadecimal values, or
symbol names. Width modifies the size of the data that is displayed. If no <width> is specified, the default
of word sized data is used.

Memory display starts at the address begin. If no beginning address is provided, the MD command uses the
last address that was displayed. If no ending address is provided, then MD will display memory up to an
address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly-aligned memory accesses.

Examples:

To display memory at address 0xFF40_0000, the command is:

md FF400000

To display memory in the data section (defined by the symbols data_start and data_end), the command is:

md data_start

To display a range of bytes from 0xFF040000 to 0xFF05_0000, the command is:

md.b FF040000 FF050000

To display a range of 32-bit values starting at 0xFF04_0000 and ending at 0xFF05_0000:

md FF040000 FF050000
26 MOTOROLA

Commands
MM Memory Modify
Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for addr may be an absolute address
specified as a hexadecimal value, or a symbol name. Width specifies the size of the data that is modified. If
no <width> is specified, the default of word sized data is used. The value for data may be a symbol name,
or a number converted according to the user-defined radix, normally hexadecimal.

For this board, the spaces where MM will work are external flash (0xFF00_0000 - 0xFF00_1FFF for the
user’s exception table and 0xFF00_2000 - 0xFFEF_FFFF for user code) and internal SRAM (0x003f_A000
- 0x003F_FFFF).Note that if the address to be modified is in external flash, dBUG assumes that the user has
erased the necessary block of memory first since flash can only change 1’s to 0’s.

If a value for data is provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data, sets
the contents of the current address to data, increments the address according to the data size, and repeats.
The loop terminates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly-aligned memory accesses.

Examples:

To set the byte at location 0xFF01_0000 to be 0xFF, the command is:

mm.b FF010000 FF

To interactively modify memory beginning at 0xFF01_0000, the command is:

mm FF010000
27 MOTOROLA

Commands
MMAP Memory Map Display
Usage: mmap

This command displays the memory map information for the MPC562BC board. The information displayed
includes the type of memory, the start and end address of the memory, and the port size of the memory. The
display also includes information on how the Chip-selects are used on the board.

Here is an example of the output from this command:

Type Start End
--
ISB 0x00000000 0x003FFFFF
Internal SRAM 0x003F8000 0x003FFFFF
User SRAM 0x003FA000 0x003FFFFF
Flash 0xFF000000 0xFFFFFFFF
User Flash 0xFF000000 0xFFEFFFFF
dBUG Flash 0xFFF00000 0xFFFFFFFF
28 MOTOROLA

Commands
RD Register Display
Usage: RD <reg>

The RD command displays the register set of the target. If no argument for reg is provided, then all registers
are displayed. Otherwise, the value for reg is displayed.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RD command displays
register values from the register buffer.

Examples:

To display all the registers and their values, the command is:

rd

To display only the program counter:

rd pc

Here is an example of the output from this command:

pc: FFF08000 msr: 00009042 [EE,ME,IP,RI]

cr: 00000000 xer: 00000000 lr: 00000000 ctr: 00000000

r00-07: 00000000 003FA000 00000000 00000000 00000000 00000000 00000000 00000000

r08-15: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

r16-23: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

r24-31: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
29 MOTOROLA

Commands
RM Register Modify
Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the name of the
register, and the value for data may be a symbol name, or it is converted according to the user-defined radix,
normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM command updates the
copy of the register in the buffer. The actual value will not be written to the register until target code is
executed.

Examples:

To change program counter to contain the value 0x00ff_2004, the command is:

rm pc ff002004
30 MOTOROLA

Commands
RESET Reset the Board and dBUG
Usage: RESET

The RESET command resets the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. If the RESET command
fails to reset the board adequately, cycle the power or press the reset button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

dBUG> reset
31 MOTOROLA

Commands
SET Set Configurations
Usage: SET <option value>

The SET command allows the setting of user-configurable options within dBUG. With no arguments, SET
displays the options and values available. The SHOW command displays the settings in the appropriate
format. The standard set of options is listed below.

• baud - This is the baud rate for the serial port on the board. All communications between dBUG
and the user occur using either 9600 or 19200 bps, eight data bits, no parity, and one stop bit, 8N1,
with no flow control. Xon/Xoff flow control should be turned on when downloading data to the
board with the DL or DLDBUG commands.

• base - This is the default radix for use in converting a number from its ASCII text representation to
the internal quantity used by dBUG. The default is hexadecimal (base 16), and other choices are
binary (base 2), octal (base 8), and decimal (base 10).

Examples:

To set the baud rate of the board to be 57600, the command is:

set baud 57600

NOTE: The board must be reset for the baud rate to be changed!

NOTE
See the SHOW command for a display containing the correct formatting
of these options.
32 MOTOROLA

Commands
SHOW Show Configurations
Usage: SHOW <option>

The SHOW command displays the settings of the user-configurable options within dBUG. When no option
is provided, SHOW displays all options and values.

Examples:

To display all options and settings, the command is:

show

To display the current baud rate of the board, the command is:

show baud

Here is an example of the output from a show command:

dBUG> show

base: 16

baud: 19200
33 MOTOROLA

Commands
STEP Step Over
Usage: STEP

The STEP command can be used to “step over” a subroutine call, rather than tracing every instruction in the
subroutine. The ST command sets a temporary software breakpoint one instruction beyond the current
program counter and then executes the target code. This command only works when executing code in
SRAM.

The STEP command can be used to “step over” BSR and JSR instructions.

The STEP command will work for other instructions as well, but note that if the STEP command is used
with an instruction that will not return, i.e. BRA, then the temporary breakpoint may never be encountered
and dBUG may never regain control.

Examples:

To pass over a subroutine call, the command is:

step
34 MOTOROLA

Commands
SYMBOL Symbol Name Management
Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a symbol name is
provided to the SYMBOL command, then the symbol table is searched for a match on the symbol name and
its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes a symbol name
from the table.

The -c option clears the entire symbol table, the -l option lists the contents of the symbol table, and the -s
option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table lookups,
either by the SYMBOL command or by the disassembler, will only use the first 31 characters. Symbol
names are case-sensitive.

Examples:

To define the symbol “main” to have the value 0xFF00_2000, the command is:

symbol -a main FF002000

To remove the symbol “junk” from the table, the command is:

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol -l
35 MOTOROLA

Commands
TRACE Trace Into
Usage: TRACE <num>

The TRACE command allows single-instruction execution. If num is provided, then num instructions are
executed before control is handed back to dBUG. The value for num is a decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single-instruction
execution, and the target code executed. Control returns to dBUG after a single-instruction execution of the
target code.

This command is repeatable.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20
36 MOTOROLA

Commands
VERSION Display dBUG Version
Usage: VERSION

The VERSION command displays the version information for dBUG. The dBUG version, build number and
build date are all given.

The version number is separated by a decimal, for example, “v 2b.1c.1a”.

The version date is the day and time at which the entire dBUG monitor was compiled and built.

Examples:

To display the version of the dBUG monitor, the command is:

version

In this example, v 2b . 1c . 1a

{ { {

dBUG common
major and minor
revision

CPU major
and minor
revision

board major
and minor
revision
37 MOTOROLA

System Call Functions
2.5 System Call Functions
An additional utility within the dBUG firmware is a function called the System Call handler. This function
can be called by the user program to utilize various routines within dBUG, to perform a special task, and to
return control to dBUG. This section describes the System Call handler and how it is used.

There are 6 System Call functions. These are: OUT_CHAR, IN_CHAR, IN_STAT, ISR_REGISTER,
ISR_REMOVE and EXIT_TO_dBUG. The system call interface accepts an opcode in r10 to indicate which
operation is to be performed. Various results are returned, usually in r3. When these routines are invoked,
the following is true: sprg0 contains r31 and sprg1 contains LR.

2.5.1 OUT_CHAR
This function (function code 0x0020) sends a character, which is in r3, to terminal. The system call interface
accepts an opcode in r10 to indicate which operation is to be performed.

Assembly example:

/* assume r3 contains the character */

addi r10, r0, 0x0020 Selects the function

sc The character in r3 is sent to terminal

C example:

/* assume r3 contains the character */

void board_out_char (int ch)

{

asm(“addi r10, r0, 0x0020”);Selects the function

asm(“sc”); The character in r3 is sent to terminal

}

2.5.2 IN_CHAR
This function (function code 0x0000) returns an input character (from terminal) to the caller. The returned
character is in r3.

Assembly example:

/* the character is returned to the user in r3*/

addi r10, r0, 0x0000 Selects the function

sc The character is returned in r3

C example:

int board_in_char (void)

{ /* assume r3 contains the character */
38 MOTOROLA

System Call Functions
asm(“addi r10, r0, 0x0000”);Selects the function

asm(“sc”); The character is returned in r3

}

2.5.3 IN_STAT
This function (function code 0x0001) checks if an input character is present to receive. A value of zero is
returned in r3 when no character is present. A value of 1 in r3 means a character is present.

Assembly example:

addi r10, r0, 0x0001 Select the function

sc Make the call, r3 contains the response (yes/no).

C example:

int board_char_present (void)

{

asm("addi r10,r0,0x0001");Select the function

asm("sc"); Make the call, r3 contains the response (yes/no).

}

2.5.4 ISR_REGISTER
This function’s code is 0x0040. For ISR_REGISTER, the vector, handler, device ptr, and arg ptr are in r3,
r4, r5, and r6 respectively.

C example:

int
board_isr_register (int vector, void *handler, void *device, void *arg)
{

/*
* Vector will normally be 0x0500 for IRQ. Handler should be address
* of your routine. Device and Arg are both used as arguments to
* Handler when it is invoked. Ie. handler(device,arg); It is
* intended that Device point to the device , and Arg is meant to point
* to a data structure to assist the ISR. If the handler is
* registered OK, 1 is returned, otherwise 0.
*/

asm("addi r10,r0,0x0040");
asm("sc");

}

2.5.5 ISR_REMOVE
This function’s code is 0x0041. For ISR_REMOVE, the vector is in r3. Nothing is returned.

Assembly example:
39 MOTOROLA

System Call Functions
addi r10, r0, 0x0041 Selects the function

sc The character is returned in r3

C example:

int

board_isr_remove (void *handler)

{

asm("addi r10,r0,0x0041");

asm("sc");

}

2.5.6 EXIT_TO_dBUG
This function (function code 0x0000) transfers the control back to the dBUG, by terminating the user code.
The register context is preserved.

Assembly example:

lwz r0,72(r1)

mtspr 8,r0

addi r1,r1,64

b asm_sc_exit_to_dbug
40 MOTOROLA

Using the dBUG
Monitor Firmware

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does Motorola assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be provided in

Motorola data sheets and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals” must be validated

for each customer application by customer’s technical experts. Motorola does not convey any

license under its patent rights nor the rights of others. Motorola products are not designed,

intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

	1.0 What Is dBUG?
	2.0 Operational Procedure
	2.1 System Power-up
	Figure�1. Flow Diagram of dBUG Operational Mode.

	2.2 System Initialization
	2.2.1 Hard RESET Button
	2.2.2 Non-Maskable Interrupt Button
	2.2.3 Software Reset Command

	2.3 Command Line Usage
	2.4 Commands
	Table�1. dBUG Command Summary�
	NOTE

	2.5 System Call Functions
	2.5.1 OUT_CHAR
	2.5.2 IN_CHAR
	2.5.3 IN_STAT
	2.5.4 ISR_REGISTER
	2.5.5 ISR_REMOVE
	2.5.6 EXIT_TO_dBUG

