
 MOTOROLA, 1999 All Rights Reserved.

dBUG Reference Manual
Revision 0.21

April 8, 1999

ii dBUG Reference Manual MOTOROLA

MOTOROLA dBUG Reference Manual iii

PREFACE

The dBUG Reference Manual describes the use of dBUG, a ROM monitor/debugger.

This manual is organized as follows:

Section 1: User’s Information
Section 2: Network Operation
Section 3: CPU Specific Information
Section 4: Writing Board Support Packages

TRADEMARKS

All trademarks reside with their respective owners.

iv dBUG Reference Manual MOTOROLA

MOTOROLA dBUG Reference Manual v

TABLE OF CONTENTS

Paragraph Page
Number Title Number

BLE OF CONTENTS

Section 1
User’s Information

1.1 Command Line Usage ..1-1
1.2 Commands ...1-2
1.2.1 ASM - Assembler ...1-2
1.2.2 BF - Block Fill ...1-3
1.2.3 BM - Block Move ..1-4
1.2.4 BS - Block Search ..1-5
1.2.5 BR - Breakpoints ..1-6
1.2.6 DATA - Data Conversion ..1-7
1.2.7 DI - Disassemble ..1-8
1.2.8 DL - Download Console ...1-9
1.2.9 DN - Download Network ...1-10
1.2.10 GO - Execute ..1-11
1.2.11 GT - Execute To ...1-12
1.2.12 HELP - Help ...1-13
1.2.13 MD - Memory Display ...1-14
1.2.14 MM - Memory Modify ..1-15
1.2.15 RD - Register Display ...1-16
1.2.16 RM - Register Modify ..1-17
1.2.17 RESET - Reset the Board and dBUG1-18
1.2.18 SET - Set Configurations ..1-19
1.2.19 SHOW - Show Configurations ..1-20
1.2.20 STEP - Step Over ...1-21
1.2.21 SYMBOL - Symbol Name Management1-22
1.2.22 TRACE - Trace Into ..1-23
1.2.23 VERSION - Display dBUG Version ..1-24
1.3 dBUG Command Summary ..1-25

Section 2
Configuring for Network Downloads

2.1 Required Network Parameters ...2-1
2.2 Configuring dBUG Network Parameters ..2-2
2.3 Troubleshooting Network Problems ...2-3

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

vi dBUG Reference Manual MOTOROLA

Section 3
CPU-Specific Information

3.1 M68000 Family ... 3-1
3.1.1 MC68EC020 ... 3-2
3.1.2 MC68EC030 ... 3-4
3.1.3 MC68EC040 ... 3-6
3.2 ColdFire MCF5200 ... 3-8
3.2.1 MCF5200/D .. 3-9
3.2.2 MCF5202 ...3-11
3.2.3 MCF5204 ...3-13
3.2.4 MCF5206 ...3-15
3.3 PowerPC ..3-17
3.3.1 MPC6XX ..3-18
3.3.2 MPC8XX ..3-21

Section 4
Writing dBUG Board Support Packages

4.1 Overview .. 4-1
4.2 Directory Structure ... 4-2
4.3 Files in the Board Support Package ... 4-3
4.4 Creating the Board Support Package .. 4-5
4.4.1 Board Support Package Template Files 4-5
4.4.2 Initial Board Support Package .. 4-5
4.5 Debugging the Board Support Package ... 4-6
4.5.1 dBUG Run-Time Entry Points .. 4-6
4.5.2 Compiler/Toolchain Considerations ... 4-8
4.6 Adding Features to the Board Support Package 4-9
4.6.1 Adding Commands ... 4-9
4.6.2 Adding SET/SHOW Options ..4-11
4.6.3 Adding TFTP Download Support ...4-13
4.7 Resources Available to the Board Support Package4-14
4.7.1 Standard C Library ...4-14
4.7.2 User Interface Resources ..4-14
4.7.3 CPU-Specific Resources ..4-15
4.7.4 Download Resources ...4-15
4.7.5 Interrupt Handling Resources ..4-16
4.7.6 Miscellaneous Resources ..4-17
4.8 dBUG Libraries ...4-17
4.8.1 LIBDBUGHOST Environment Variable4-17
4.8.2 Diab Data, Inc. ...4-19
4.8.3 GNU C ..4-19

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA dBUG Reference Manual vii

4.8.4 Experimental GNU Compiler System4-20
4.9 Board-Specific Functions ...4-20
4.10 Optional Board-Specific Functions ...4-35
4.11 dBUG Internal Functions ..4-50

viii dBUG Reference Manual MOTOROLA

MOTOROLA dBUG Reference Manual 1-1

SECTION 1
USER’S INFORMATION

dBUG is a traditional ROM monitor/debugger that offers a comfortable and intuitive
command line interface that can be used to download and execute code. It contains all the
primary features needed in a debugger to create a useful debugging environment.

1.1 COMMAND LINE USAGE

The user interface to dBUG is the command line. A number of features have been
implemented to achieve an easy and intuitive command line interface.

dBUG assumes that an 80x24 ASCII character dumb terminal is used to connect to the
debugger. For serial communications, dBUG requires eight data bits, no parity, and one stop
bit (8N1). The baud rate may be either 9600 or 19200 bps — speeds commonly available
from workstations, personal computers and dedicated terminals.

The command line prompt is:

dBUG>

Any dBUG command may be entered from this prompt. dBUG does not allow command
lines to exceed 80 characters. Wherever possible, dBUG displays data in 80 columns or
less. dBUG echoes each character as it is typed, eliminating the need for any local echo on
the terminal side.

The <Backspace> and <Delete> keys are recognized as rub-out keys for correcting
typographical mistakes.

Command lines may be recalled using the <Control> U, <Control> D and <Control> R key
sequences. <Control> U and <Control> D cycle up and down through previous command
lines. <Control> R recalls and executes the last command line.

In general, dBUG is not case-sensitive. Commands may be entered either in uppercase or
lowercase, depending upon the user’s equipment and preference. Only symbol names
require that the exact case be used.

Most commands can be recognized by using an abbreviated name. For instance, entering
h is the same as entering help. Thus it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging.
dBUG recognizes this and allows for repeated execution of these commands with minimal
typing. After a command is entered, press the <Return> or <Enter> key to invoke the

User’s Information REV 0.2

1-2 dBUG Reference Manual MOTOROLA

command again. The command is executed as if no command line parameters were
provided.

1.2 COMMANDS
This section lists the commands that are available with all versions of dBUG. Some board
or CPU combinations may use additional commands not listed below.

1.2.1 ASM - Assembler

Usage: ASM <<addr> stmt>

The ASM command is a primitive assembler. The stmt is assembled and the resulting code
placed at <addr>. This command has an interactive and non-interactive mode of operation.

The value for address <addr> may be an absolute address specified as a hexadecimal
value, or a symbol name. The value for stmt must be valid assembler mnemonics for the
CPU.

For the interactive mode, the user enters the command and the optional <addr>. If the
address is not specified, then the last address is used. The memory contents at the address
are disassembled, and the user prompted for the new assembly. If valid, the new assembly
is placed into memory, and the address incremented accordingly. If the assembly is not
valid, then memory is not modified, and an error message produced. In either case, memory
is disassembled and the process repeats.

The user may press the <Enter> or <Return> key to accept the current memory contents
and skip to the next instruction, or a enter period to quit the interactive mode.

In the non-interactive mode, the user specifies the address and the assembly statement on
the command line. The statement is the assembled, and if valid, placed into memory,
otherwise an error message is produced.

Examples:

To place a NOP instruction at address 0x00010000, the command is:

asm 10000 nop

To interactively assembly memory at address 0x00400000, the command is:

asm 400000

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-3

1.2.2 BF - Block Fill

Usage: BF<width> begin end data <inc>

The BF command fills a contiguous block of memory starting at address begin, stopping at
address end, with the value data. Width modifies the size of the data that is written.

The value for addresses begin and end may be an absolute address specified as a
hexadecimal value, or a symbol name. The value for data may be a symbol name, or a
number converted according to the user-defined radix, normally hexadecimal.

The optional value <inc> can be used to increment (or decrement) the data value during the
fill.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the value
0x1234, the command is:

bf 10000 40000 1234

To fill a block of memory starting at 0x00010000 and ending at 0x0004000 with a byte value
of 0xAB, the command is:

bf.b 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and
bss_end), the command is:

bf bss_start bss_end 0

User’s Information REV 0.2

1-4 dBUG Reference Manual MOTOROLA

1.2.3 BM - Block Move

Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address begin and
stopping at address end to the new address dest. The BM command copies memory as a
series of bytes, and does not alter the original block.

The values for addresses begin, end, and dest may be absolute addresses specified as
hexadecimal values, or symbol names. If the destination address overlaps the block defined
by begin and end, an error message is produced and the command exits.

Examples:

To copy a block of memory starting at 0x00040000 and ending at 0x00080000 to the
location 0x00200000, the command is:

bm 40000 80000 200000

To copy the target code’s data section (defined by the symbols data_start and data_end) to
0x00200000, the command is:

bm data_start data_end 200000

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-5

1.2.4 BS - Block Search

Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin,
stopping at address end, for the value data. Width modifies the size of the data that is
compared during the search.

The values for addresses begin and end may be absolute addresses specified as
hexadecimal values, or symbol names. The value for data may be a symbol name or a
number converted according to the user-defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000 and
ending at 0x00080000:

MC68000 and ColdFire:

bs 40000 80000 1234

PowerPC:

bs.h 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the 16-bit value
0x1234. If no match is found, then the address is incremented to 0x00040002 and the next
16-bit value is read and compared.

To search for the 32-bit value 0xABCD in the memory block starting at 0x00040000 and
ending at 0x00080000:

MC68000 and ColdFire:

bs.l 40000 80000 ABCD

PowerPC:

bs 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the 32-bit value
0x0000ABCD. If no match is found, then the address is incremented to 0x00040004 and the
next 32-bit value is read and compared.

User’s Information REV 0.2

1-6 dBUG Reference Manual MOTOROLA

1.2.5 BR - Breakpoints

Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr may
be an absolute address specified as a hexadecimal value, or a symbol name. Count and
trigger are numbers converted according to the user-defined radix, normally hexadecimal.

If no argument is provided to the BR command, a listing of all defined breakpoints is
displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no
address is specified in conjunction with the -r option, then all breakpoints are removed.

Each time a breakpoint is encountered during the execution of target code, its count value
is incremented by one. By default, the initial count value for a breakpoint is zero, but the -c
option allows setting the initial count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value
is compared against the trigger value. If the count value is equal to or greater than the trigger
value, a breakpoint is encountered and control returned to dBUG. By default, the initial
trigger value for a breakpoint is one, but the -t option allows setting the initial trigger for the
breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are
initialized to the values specified by the -c or -t option.

Examples:

To set a breakpoint at the C function main(), the command is:

br _main

When the target code is executed and the processor reaches main(), control will be returned
to dBUG.

To set a breakpoint at the C function bench() and set its trigger value to 3, the command is:

br _bench -t 3

When the target code is executed, the processor must attempt to execute the function
bench() a third time before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-7

1.2.6 DATA - Data Conversion

Usage: DATA data

The DATA command displays data in hexadecimal, binary, and decimal notation.

The value for data may be a symbol name or an absolute value. If an absolute value passed
into the DATA command is prefixed by ‘0x’, then data is interpreted as a hexadecimal value.
Otherwise data is interpreted as a decimal value.

All values are treated as 32-bit quantities.

Examples:

To display the decimal equivalent of 0x1234, the command is:

data 0x1234

To display the hexadecimal equivalent of 1234, the command is:

data 1234

User’s Information REV 0.2

1-8 dBUG Reference Manual MOTOROLA

1.2.7 DI - Disassemble

Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be
an absolute address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce
a more meaningful disassembly. This is especially useful for branch target addresses and
subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no
address is provided to the DI command, then the DI command uses the address of the last
opcode that was disassembled.

Examples:

To disassemble code that starts at 0x00040000, the command is:

di 40000

To disassemble code of the C function main(), the command is:

di _main

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-9

1.2.8 DL - Download Console

Usage: DL <offset>

The DL command performs an S-record download of data obtained from the console,
typically a serial port. The value for offset is converted according to the user-defined radix,
normally hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset.

The DL command checks the destination download address for validity. If the destination is
an address outside the defined user space, then an error message is displayed and
downloading aborted.

If the S-record file contains the entry point address, then the program counter is set to reflect
this address.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port, and adjust the destination address by
0x40, the command is:

dl 0x40

User’s Information REV 0.2

1-10 dBUG Reference Manual MOTOROLA

1.2.9 DN - Download Network

Usage: DN <-c> <-e> <-i> <-s> <-o offset> <filename>

The DN command downloads code from the network. The DN command handle files which
are either S-record, COFF, ELF or Image formats. The DN command uses Trivial File
Transfer Protocol (TFTP) to transfer files from a network host.

In general, the type of file to be downloaded and the name of the file must be specified to
the DN command. The -c option indicates a COFF download, the -e option indicates an ELF
download, the -i option indicates an Image download, and the -s indicates an S-record
download. The -o option works only in conjunction with the -s option to indicate an optional
offset for S-record download. The filename is passed directly to the TFTP server and
therefore must be a valid filename on the server.

If neither of the -c, -e, -i, -s or filename options are specified, then a default filename and
filetype will be used. Default filename and filetype parameters are manipulated using the
SET and SHOW commands.

The DN command checks the destination download address for validity. If the destination is
an address outside the defined user space, then an error message is displayed and
downloading aborted.

For ELF and COFF files which contain symbolic debug information, the symbol tables are
extracted from the file during download and used by dBUG. Only global symbols are kept in
dBUG. The dBUG symbol table is not cleared prior to downloading, so it is the user’s
responsibility to clear the symbol table as necessary prior to downloading.

If an entry point address is specified in the S-record, COFF or ELF file, the program counter
is set accordingly.

Examples:

To download an S-record file with the name “srec.out”, the command is:

dn -s srec.out

To download a COFF file with the name “coff.out”, the command is:

dn -c coff.out

To download a file using the default filetype with the name “bench.out”, the command is:

dn bench.out

To download a file using the default filename and filetype, the command is:

dn

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-11

1.2.10 GO - Execute

Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may
be an absolute address specified as a hexadecimal value, or a symbol name.

If no argument is provided, the GO command begins executing instructions at the current
program counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target
code, and the context is switched to the target program. Control is only regained when the
target code encounters a breakpoint, illegal instruction, or other exception which causes
control to be handed back to dBUG.

Examples:

To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0x00040000, the command is:

go 40000

User’s Information REV 0.2

1-12 dBUG Reference Manual MOTOROLA

1.2.11 GT - Execute To

Usage: GT addr

The GT command inserts a temporary breakpoint at addr and then executes target code
starting at the current program counter. The value for addr may be an absolute address
specified as a hexadecimal value, or a symbol name.

When the GT command is executed, all breakpoints are inserted into the target code, and
the context is switched to the target program. Control is only regained when the target code
encounters a breakpoint, illegal instruction, or other exception which causes control to be
handed back to dBUG.

Examples:

To execute code up to the C function bench(), the command is:

gt _bench

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-13

1.2.12 HELP - Help

Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In
addition, the address of where user code may start is given. If command is provided, then a
brief listing of the syntax of the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

To obtain help on the breakpoint command, the command is:

help br

User’s Information REV 0.2

1-14 dBUG Reference Manual MOTOROLA

1.2.13 MD - Memory Display

Usage: MD<width> <begin> <end>

The MD command displays a contiguous block of memory starting at address begin and
stopping at address end. The values for addresses begin and end may be absolute
addresses specified as hexadecimal values, or symbol names. Width modifies the size of
the data that is displayed.

Memory display starts at the address begin. If no beginning address is provided, the MD
command uses the last address that was displayed. If no ending address is provided, then
MD will display memory up to an address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end),
the command is:

md data_start

To display a range of bytes from 0x00040000 to 0x00050000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x00040000 and ending at 0x00050000:

MC68000 and ColdFire:

md.l 40000 50000

PowerPC:

md.w 40000 50000

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-15

1.2.14 MM - Memory Modify

Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr may
be an absolute address specified as a hexadecimal value, or a symbol name. Width
specifies the size of the data that is modified. The value for data may be a symbol name, or
a number converted according to the user-defined radix, normally hexadecimal.

If a value for data is provided, then the MM command immediately sets the contents of addr
to data. If no value for data is provided, then the MM command enters into a loop. The loop
obtains a value for data, sets the contents of the current address to data, increments the
address according to the data size, and repeats. The loop terminates when an invalid entry
for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

User’s Information REV 0.2

1-16 dBUG Reference Manual MOTOROLA

1.2.15 RD - Register Display

Usage: RD <reg>

The RD command displays the register set of the target. If no argument for reg is provided,
then all registers are displayed. Otherwise, the value for reg is displayed.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RD
command displays register values from the register buffer.

Examples:

To display all the registers and their values, the command is:

rd

To display only the program counter:

rd pc

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-17

1.2.16 RM - Register Modify

Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the
name of the register, and the value for data may be a symbol name, or it is converted
according to the user-defined radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM
command updates the copy of the register in the buffer. The actual value will not be written
to the register until target code is executed.

Examples:

To change register D0 on MC68000 and ColdFire to contain the value 0x1234, the
command is:

rm D0 1234

To change special-purpose register 8 on PowerPC to contain the value 0x00010000, the
command is:

rm spr8 10000

User’s Information REV 0.2

1-18 dBUG Reference Manual MOTOROLA

1.2.17 RESET - Reset the Board and dBUG

Usage: RESET

The RESET command resets the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. If the
RESET command fails to reset the board adequately, cycle the power or press the reset
button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

reset

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-19

1.2.18 SD - Stack Dump Command

Usage:

The stack dump command allows

User’s Information REV 0.2

1-20 dBUG Reference Manual MOTOROLA

1.2.19 SET - Set Configurations

Usage: SET <option value>

The SET command allows the setting of user-configurable options within dBUG. With no
arguments, SET displays the options and values available. The standard set of options is
listed below.

• baud - This is the baud rate for the first serial port on the board. All communications
between dBUG and the user occur using either 9600 or 19200 bps, eight data bits, no
parity, and one stop bit, 8N1.

• base - This is the default radix for use in converting a number from its ASCII text
representation to the internal quantity used by dBUG. The default is hexadecimal (base
16), and other choices are binary (base 2), octal (base 8), and decimal (base 10).

• client - This is the network Internet Protocol (IP) address of the board. For network
communications, the client IP is required to be set to a unique value, usually assigned
by your local network administrator.

• server - This is the network IP address of the machine which contains files accessible
via TFTP. Your local network administrator will have this information and can assist in
properly configuring a TFTP server if one does not exist.

• gateway - This is the network IP address of the gateway for your local subnetwork. If
the client IP address and server IP address are not on the same subnetwork, then this
option must be properly set. Your local network administrator will have this information.

• netmask - This is the network address mask to determine if use of a gateway is
required. This field must be properly set. Your local network administrator will have this
information.

• filename - This is the default filename to be used for network download if no name is
provided to the DN command.

• filetype - This is the default file type to be used for network download if no type is
provided to the DN command. Valid values are: “srecord”, “coff”, and “elf”.

Different boards or CPUs may utilize additional options not listed above.

Examples:

To set the baud rate of the board to be 19200, the command is:

set baud 19200

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-21

1.2.20 SHOW - Show Configurations

Usage: SHOW <option>

The SHOW command displays the settings of the user-configurable options within dBUG.
When no option is provided, SHOW displays all options and values.

Examples:

To display all options and settings, the command is:

show

To display the current baud rate of the board, the command is:

show baud

User’s Information REV 0.2

1-22 dBUG Reference Manual MOTOROLA

1.2.21 STEP - Step Over

Usage: STEP

The STEP command can be used to “step over” a subroutine call, rather than tracing every
instruction in the subroutine. The ST command sets a temporary breakpoint one instruction
beyond the current program counter and then executes the target code.

For MC68000 and ColdFire, the STEP command can be used for BSR and JSR instructions.

For PowerPC, the command can be used for BL, BLA, BCL and BCLA instructions.

The STEP command will work for other instructions as well, but note that if the STEP
command is used with an instruction that will not return, i.e., BRA on MC68000 and ColdFire
or BA on PowerPC, then the temporary breakpoint may never be encountered and dBUG
may never regain control.

Examples:

To pass over a subroutine call, the command is:

step

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-23

1.2.22 SYMBOL - Symbol Name Management

Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a
symbol name is provided to the SYMBOL command, then the symbol table is searched for
a match on the symbol name and its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes
a symbol name from the table.

The -c option clears the entire symbol table, the -l option lists the contents of the symbol
table, and the -s option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol
table lookups, either by the SYMBOL command or by the disassembler, will only use the first
31 characters. Symbol names are case-sensitive.

Examples:

To define the symbol “main” to have the value 0x00040000, the command is:

symbol -a main 40000

To remove the symbol “junk” from the table, the command is:

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol -l

User’s Information REV 0.2

1-24 dBUG Reference Manual MOTOROLA

1.2.23 TRACE - Trace Into

Usage: TRACE <num>

The TRACE command allows single-instruction execution. If num is provided, then num
instructions are executed before control is handed back to dBUG. The value for num is a
decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single-
instruction execution, and the target code executed. Control returns to dBUG after a single-
instruction execution of the target code.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

REV 0.2 User’s Information

MOTOROLA dBUG Reference Manual 1-25

1.2.24 VERSION - Display dBUG Version

Usage: VERSION

The VERSION command displays the version information for dBUG. The dBUG version,
build number and build date are all given.

The version number is separated by a decimal, for example, “v 2b.1c.1a”.

The version date is the day and time at which the entire dBUG monitor was compiled and
built.

Examples:

To display the version of the dBUG monitor, the command is:

version

In this example, v 2b . 1c . 1a{ { {

dBUG common
major and minor
revision

CPU major
and minor
revision

board major
and minor
revision

User’s Information REV 0.2

1-26 dBUG Reference Manual MOTOROLA

1.3 DBUG COMMAND SUMMARY

Table 1-1. dBUG Command Summary
ASM Assemble ASM <<addr> stmt>
BF Block Fill BF<width> begin end data <inc>
BM Block Move BM begin end dest

BS Block Search BS<width> begin end data
BR Breakpoint BR addr <-r> <-c count> <-t trigger>

DATA Data Convert DATA value

DI Disassemble DI <addr>
DL Download Serial DL <offset>
DN Download Network DN <-c> <-e> <-i> <-s <-o offset>> <filename>

GO Execute GO <addr>
GT Execute To GT addr

HELP Help help <command>

MD Memory Display md<width> <begin> <end>
MM Memory Modify mm<width> addr <data>
RD Register Display rd <reg>

RM Register Modify rm reg data
RESET Reset reset

SD Stack Dump

SET Set Configurations set <option value>
SHOW Show Configurations show <option>
STEP Step (Over) step

SYMBOL Symbol Management symbol <symb> <-a symb value> <-r symb> <-C|l|s>
TRACE Trace (Into) trace <num>

VERSION Show Version version

MOTOROLA dBUG Reference Manual 2-1

SECTION 2
CONFIGURING FOR NETWORK DOWNLOADS

dBUG is capable of downloading over an Ethernet network using the Trivial File Transfer
Protocol (TFTP). Prior to using this feature, several parameters are required for network
downloads to occur. The information that is required and the steps for configuring dBUG are
described in the following paragraphs.

2.1 REQUIRED NETWORK PARAMETERS
For performing network downloads, dBUG needs six parameters; four are network-related,
and two are download-related. The parameters are listed below, with the dBUG designation
following in parenthesis.

All computers connected to an Ethernet network using the Internet Protocol (IP) need three
network-specific parameters. These parameters are:

• IP address for the dBUG-based computer (client)

• IP address of the gateway for non-local traffic (gateway)

• Network IP netmask for flagging traffic as local or non-local (netmask)

In addition, the dBUG network download command requires the following three parameters:

• IP address of the TFTP server (server)

• Default name of the file to download (filename)

• Default type of the file to download (filetype)

Your local system administrator can assign a unique IP address for the board, and also
provide you the IP addresses of the gateway, netmask, and TFTP server. Fill out the lines
below with this information.

Client: ___.___.___.___ (IP address of the board)

Server: ___.___.___.___ (IP address of the TFTP server)

Gateway: ___.___.___.___ (IP address of the gateway)

Netmask: ___.___.___.___ (Network netmask)

Configuring for Network Downloads REV 0.2

2-2 dBUG Reference Manual MOTOROLA

2.2 CONFIGURING DBUG NETWORK PARAMETERS

Once the network parameters have been obtained, dBUG must be configured. The
following commands are used to configure the network parameters.

set client <client IP>
set server <server IP>
set gateway <gateway IP>
set netmask <netmask>

For example, the TFTP server is named ‘santafe’ and has IP address 123.45.67.1. The
board is assigned the IP address of 123.45.68.15. The gateway IP address is
123.45.68.250, and the netmask is 255.255.255.0. The commands to dBUG are:

set client 123.45.68.15
set server 123.45.67.1
set gateway 123.45.68.250
set netmask 255.255.255.0

The last step is to inform dBUG of the name and type of the file to download. Prior to giving
the name of the file, keep in mind the following: Most, if not all, TFTP servers will only permit
access to files starting at a particular sub-directory. (This is a security feature which prevents
reading of arbitrary files by unknown persons.) For example, SunOS uses the directory
/tftp_boot as the default TFTP directory. When specifying a filename to a SunOS TFTP
server, all filenames are relative to /tftp_boot. As a result, you normally will be required to
copy the file to download into the directory used by the TFTP server.

A default filename for network downloads is maintained by dBUG. To change the default
filename, use the command:

set filename <filename>

When using the Ethernet network for downloading, either S-record, COFF, Elf, or Image files
may be downloaded. A default filetype for network downloads is maintained by dBUG as
well. To change the default filetype, use the command:

set filetype <srecord|coff|elf|image>

Continuing with the above example, the compiler produces an executable COFF file, a.out.
This file is copied to the /tftp_boot directory on the server with the command:

rcp a.out santafe:/tftp_boot/a.out

Change the default filename and filetype with the commands:

set filename a.out
set filetype coff

REV 0.2 Configuring for Network Downloads

MOTOROLA dBUG Reference Manual 2-3

Finally, perform the network download with the DN command. The network download
process uses the configured IP addresses and the default filename and file type for initiating
a TFTP download from the TFTP server.

2.3 TROUBLESHOOTING NETWORK PROBLEMS

Most problems related to network downloads are a direct result of improper configuration.
Verify that all IP addresses configured into dBUG are correct. This is accomplished via the
SHOW command.

Using an IP address that is already assigned to another machine will cause the dBUG
network download to fail, and will probably cause other severe network problems. Make
certain the client IP address is unique for the board.

Check for proper insertion or connection of the network cable. Are status LEDs lit to indicate
that network traffic is present?

Check for proper configuration and operation of the TFTP server. Most Unix workstations
can execute the command TFTP which can be used to connect to the TFTP server as well.
Is the default TFTP root directory present and readable?

If ICMP_DESTINATION_UNREACHABLE or similar ICMP messages appear, then a serious
error has occurred. Reset the board and wait one minute for the TFTP server to time out and
terminate any open connections. Verify that the IP addresses for the server and gateway are
correct.

Configuring for Network Downloads REV 0.2

2-4 dBUG Reference Manual MOTOROLA

MOTOROLA dBUG Reference Manual 3-1

SECTION 3
CPU-SPECIFIC INFORMATION

This section provides information concerning the use and management of the CPU
resources by dBUG.

3.1 M68000 FAMILY
For the M68000 family of processors, the following generalizations are true.

For commands that accept an optional <width> to modify the memory access size, the valid
values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

The core MC68000 register set is maintained by dBUG. These are listed below:

• A0-A7

• D0-D7

• PC

• SR

dBUG supports the following processors:

• MC68EC020

• MC68EC030

• MC68EC040

More complete descriptions of these CPUs are given in the following paragraphs.

CPU-Specific Information REV 0.2

3-2 dBUG Reference Manual MOTOROLA

3.1.1 MC68EC020

The MC68EC020 is an embedded controller with an on-chip instruction cache for faster
instruction executions. A 24-bit address bus and 32-bit data bus provide dynamic bus sizing
for simple bus access to 8-, 16-, and 32-bit devices. The MC68EC020 provides full support
of virtual memory and virtual machine. A new bit field data type accelerates bit-oriented
applications — e.g. video graphics.

3.1.1.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.1.1.2 CPU-SPECIFIC COMMANDS. None.

3.1.1.3 REGISTER SET. dBUG maintains these registers.

• A0-A7 (A7 is USP)

• D0-D7

• PC

• SR

• ISP, MSP, VBR, SFC, DFC, CACR, CAAR, AC0, AC1, ACUSR

3.1.1.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• Caches are flushed and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• If caches were previously enabled, then caches are turned on again.

• The register context is restored.

• An RTE instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-3

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

3.1.1.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mc68ec020_lo.s
executes to perform basic initialization of the MC68EC020 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e., memory
controller). When complete, the low-level board-specific initialization code jumps back
to label to asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

3. Both CACR and CAAR registers are written with zeros to disable caching. AC0, AC1
and ACUSR are not touched.

Consult the board support package code for additional information on the initialization
sequence of the MC68EC020.

3.1.1.6 MISCELLANEOUS NOTES. The MD and MM commands do not honor the values
of the SFC and DFC registers.

For MC68000 documentation, order Motorola Literature part MC68000PM/AD.

For MC68EC020 documentation, order Motorola Literature part MC68020UM/AD.

CPU-Specific Information REV 0.2

3-4 dBUG Reference Manual MOTOROLA

3.1.2 MC68EC030

The MC68EC030 is a 32-bit embedded controller with two access control registers that
define cacheable blocks for the independent 256-byte data and instruction caches. Dynamic
bus sizing provides simple bus access to 8-, 16-, and 32-bit devices, and burst mode allows
efficient DRAM interface.

3.1.2.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.1.2.2 CPU-SPECIFIC COMMANDS. None.

3.1.2.3 REGISTER SET. dBUG maintains these registers.

• A0-A7 (A7 is USP)

• D0-D7

• PC

• SR

• ISP, MSP, VBR, SFC, DFC, CACR, CAAR, AC0, AC1, ACUSR

3.1.2.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• Caches are flushed and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• If caches were previously enabled, then caches are turned on again.

• The register context is restored.

• An RTE instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-5

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

3.1.2.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mc68ec030_lo.s
executes to perform basic initialization of the MC68EC030 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e. memory
controller). When complete, the low-level board-specific initialization code jumps back
to label asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

3. Both CACR and CAAR registers are written with zeros to disable caching.

4. AC0, AC1 and ACUSR registers are written with zeros.

Consult the board support package code for additional information on the initialization
sequence of the MC68EC030.

3.1.2.6 MISCELLANEOUS NOTES. The MD and MM commands do not honor the values
of the SFC and DFC registers.

For MC68000 documentation, order Motorola Literature part MC68000PM/AD.

For MC68EC0320 documentation, order Motorola Literature part MC68030UM/AD.

CPU-Specific Information REV 0.2

3-6 dBUG Reference Manual MOTOROLA

3.1.3 MC68EC040

The MC68EC040 is a 32-bit embedded controller that contains fully independent 2 kbyte
instruction and data caches, and retains the high-performance integer unit and execution
parallelism of the MC68040 microprocessor.

3.1.3.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.1.3.2 CPU-SPECIFIC COMMANDS. None.

3.1.3.3 REGISTER SET. dBUG maintains these registers.

• A0-A7 (A7 is USP)

• D0-D7

• PC

• SR

• ISP, MSP, VBR, SFC, DFC, CACR, DACR0, DACR1, IACR0, IACR1

3.1.3.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• Caches are flushed and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• If caches were previously enabled, then caches are turned on again.

• The register context is restored.

• An RTE instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-7

3.1.3.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mc68ec040_lo.s
executes to perform basic initialization of the MC68EC040 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e. memory
controller). When complete, the low-level board-specific initialization code jumps back
to label asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

3. The CACR, DACR0, DACR1, IACR0 and IACR1 registers are written with zeros to
disable caching.

4. Both the instruction and data caches are invalidated.

Consult the board support package code for additional information on the initialization
sequence of the MC68EC040.

3.1.3.6 MISCELLANEOUS NOTES. The MD and MM commands do not honor the values
of the SFC and DFC registers.

For MC68000 documentation, order Motorola Literature part MC68000PM/AD.

For MC68EC040 documentation, order Motorola Literature part MC68040UM/AD.

CPU-Specific Information REV 0.2

3-8 dBUG Reference Manual MOTOROLA

3.2 COLDFIRE MCF5200

For the ColdFire MCF5200 family of processors, the following generalizations are true.

For commands that accept an optional <width> to modify the memory access size, the valid
values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

The core MCF5200 register set is maintained by dBUG. These are listed below:

• A0-A7

• D0-D7

• PC

• SR

dBUG supports the following processors:

• MCF5200/D

• MCF5202

• MCF5204

• MCF5206

• MCF5206e

• MCF5307

More complete descriptions of these CPUs are given in the following paragraphs.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-9

3.2.1 MCF5200/D

The MCF5200/D processor is a developers’ chip which contains only the ColdFire core.

3.2.1.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.2.1.2 CPU-SPECIFIC COMMANDS. None.

3.2.1.3 REGISTER SET. dBUG maintains these registers.

• A0-A7

• D0-D7

• PC

• SR

None of the ColdFire control registers are readable by the supervisor programming model,
so they are not accessible via dBUG. User code may change these registers, but caution
must be exercised as changes may render dBUG useless.

3.2.1.4 EXCEPTION PROCESSING. When an exception occurs, the registers context is
stored in the register context buffer and the exception is handled appropriately. If execution
is to continue after the exception, then the register context is restored and an RTE
instruction starts code execution again.

When an interrupt occurs, the volatile registers (as per the ABI) are stored on the stack and
the appropriate interrupt handler invoked. The return value dictates whether execution
continues or the register context stored and control returned to dBUG.

3.2.1.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mcf5200_lo.s
executes to perform basic initialization of the MCF5200 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e., memory
controller). When complete, the low-level board-specific initialization code jumps back
to label asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

Consult the board support package code for additional information on the initialization
sequence of the MCF5200.

CPU-Specific Information REV 0.2

3-10 dBUG Reference Manual MOTOROLA

3.2.1.6 MISCELLANEOUS NOTES. Errata: MOVEC to VBR actually loads the VBR with
the contents of A7.

The MCF5200/D version of dBUG can support all MCF5200 ColdFire processors.

For ColdFire documentation, order Motorola Literature part MCF5200PRM/AD.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-11

3.2.2 MCF5202

The MCF5202 contains the ColdFire core, along with 2K of unified instruction and data
cache.

3.2.2.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.2.2.2 CPU-SPECIFIC COMMANDS. None.

3.2.2.3 REGISTER SET. dBUG maintains these registers.

• A0-A7

• D0-D7

• PC

• SR

None of the ColdFire control registers are readable by the supervisor programming model,
so they are not accessible via dBUG. User code may change these registers, but caution
must be exercised as changes may render dBUG useless.

3.2.2.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• The unified cache is flushed and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• The register context is restored.

• An RTE instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

CPU-Specific Information REV 0.2

3-12 dBUG Reference Manual MOTOROLA

3.2.2.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mcf5202_lo.s
executes to perform basic initialization of the MCF5202 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e. memory
controller). When complete, the low-level board-specific initialization code jumps back
to label asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

3. The CACR register is written to invalidate and disable the unified cache.

4. The ACR0 and ACR1 registers are written with zeros to disable them.

Consult the board support package code for additional information on the initialization
sequence of the MCF5202.

3.2.2.6 MISCELLANEOUS NOTES. Errata: MOVEC to VBR actually loads the VBR with
the contents of A7.

For ColdFire documentation, order Motorola Literature part MCF5200PRM/AD.

For MCF5202 documentation, order Motorola Literature part MCF5202UM/AD.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-13

3.2.3 MCF5204

The MCF5204 integrates a ColdFire core with on-chip SRAM, UART, timers and chip
selects. The MCF5204 includes a 512-byte instruction cache.

3.2.3.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.2.3.2 CPU-SPECIFIC COMMANDS. None.

3.2.3.3 REGISTER SET. dBUG maintains these registers.

• A0-A7

• D0-D7

• PC

• SR

None of the ColdFire control registers are readable by the supervisor programming model,
so they are not accessible via dBUG. User code may change these registers, but caution
must be exercised as changes may render dBUG useless.

3.2.3.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• The instruction cache is invalidated and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• The register context is restored.

• An RTE instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

CPU-Specific Information REV 0.2

3-14 dBUG Reference Manual MOTOROLA

3.2.3.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mcf5204_lo.s
executes to perform basic initialization of the MCF5204 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e. external
memory controller). When complete, the low-level board-specific initialization code
jumps back to label asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

3. The CACR register is written to invalidate and disable the instruction cache.

4. The ACR0 and ACR1 registers are written with zeros to disable them.

5. The RAMBAR is temporarily mapped to provide a working stack space for the
initialization code.

6. The function mcf5204_mbar() is called to obtain the address at which to map the
MBAR.

7. The function mcf5204_rambar() is called to obtain the address at which to map the
RAMBAR.

8. The MBAR and RAMBAR are mapped to the appropriate addresses.

9. The function mcf5204_init() is called to perform all remaining initialization of the
MCF5204 internal peripherals.

10.The stack pointer is changed to point to RAM rather than internal SRAM.

Consult the board support package code for additional information on the initialization
sequence of the MCF5204.

3.2.3.6 MISCELLANEOUS NOTES. Errata: MOVEC to VBR actually loads the VBR with
the contents of A7.

For ColdFire documentation, order Motorola Literature part MCF5200PRM/AD.

For MCF5204 documentation, order Motorola Literature part MCF5204UM/AD.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-15

3.2.4 MCF5206

The MCF5206 and MCF5206e integrate a ColdFire core with on-chip SRAM, two UARTs,
timers, chip selects and a DRAM controller. They also include 512 byte instruction cache.

3.2.4.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16 bits.

3.2.4.2 CPU-SPECIFIC COMMANDS. None.

3.2.4.3 REGISTER SET. dBUG maintains these registers.

• A0-A7

• D0-D7

• PC

• SR

None of the ColdFire control registers are readable by the supervisor programming model,
so they are not accessible via dBUG. User code may change these registers, but caution
must be exercised as changes may render dBUG useless.

3.2.4.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• The instruction cache is invalidated and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• The register context is restored.

• An RTE instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

CPU-Specific Information REV 0.2

3-16 dBUG Reference Manual MOTOROLA

3.2.4.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mcf5206_lo.s
executes to perform basic initialization of the MCF5206 internal resources.

1. A jump to label asm_llinit performs low-level board-specific initialization (i.e. external
memory controller). When complete, the low-level board-specific initialization code
jumps back to label asm_lldone.

2. The VBR register is written with the address of the dBUG vector table.

3. The CACR register is written to invalidate and disable the instruction cache.

4. The ACR0 and ACR1 registers are written with zeros to disable them.

5. The RAMBAR is temporarily mapped to provide a working stack space for the
initialization code.

6. The function mcf5206_mbar() is called to obtain the address at which to map the
MBAR.

7. The function mcf5206_rambar() is called to obtain the address at which to map the
RAMBAR.

8. The MBAR and RAMBAR are mapped to the appropriate addresses.

9. The function mcf5206_init() is called to perform all remaining initialization of the
MCF5206 internal peripherals.

10.The stack pointer is changed to point to RAM rather than internal SRAM.

Consult the board support package code for additional information on the initialization
sequence of the MCF5206.

3.2.4.6 MISCELLANEOUS NOTES. Errata: MOVEC to VBR actually loads the VBR with
the contents of A7.

For ColdFire documentation, order Motorola Literature part MCF5200PRM/AD.

For MCF5206 documentation, order Motorola Literature part MCF5206UM/AD.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-17

3.3 POWERPC

For the PowerPC family of processors, the following generalizations are true.

For commands that accept an optional <width> to modify the memory access size, the valid
values are:

.B 8-bit (byte) access

.H 16-bit (half-word) access

.W 32-bit (word) access

When no <width> option is provided, the default width is .W, 32 bits.

The core PowerPC register set is maintained by dBUG.

• GPR0-31 (referenced as R0-R31)

• IP (SRR0 is IP)

• MSR (SRR1 is MSR)

• CR, CTR, XER, LR

Most registers are accessible via their symbolic names as well as the special-purpose
register number. For instance, the Link Register, SPR8, can be referenced as both “spr8”
and “LR”.

dBUG supports the following processors:

• MPC6XX

• MPC8XX

More complete descriptions of these CPUs are provided in the following sections.

CPU-Specific Information REV 0.2

3-18 dBUG Reference Manual MOTOROLA

3.3.1 MPC6XX

The MPC6XX family of processors contain a high performance PowerPC core and large on-
chip caches. The MPC6XX version of dBUG supports these PowerPC processors:

• MPC602

• MPC603, MPC603e, MPC603ev

• MPC604, MPC604e, MPC604ev

• MPC740, MPC750

3.3.1.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.H 16-bit (half-word) access

.W 32-bit (word) access

When no <width> option is provided, the default width is .W, 32 bits.

3.3.1.2 CPU-SPECIFIC COMMANDS. The IBR command is used to enable a hardware
instruction breakpoint.

3.3.1.3 REGISTER SET. dBUG maintains these registers.

• GPR0-31 (referenced as r0-r31)

• FPSCR, FPR0-31 (referenced as f0-f31)

• IP (SRR0 is IP)

• MSR (SRR1 is MSR)

• CR, CTR, XER, LR

• DEC, PVR, TBL, TBU and SR0-15

• IBATxL, IBATxU, DBATxL, DBATxU, SDR1, DAR, and DSISR

Additional registers are maintained according to the MPC6XX processor in the system.

MPC602:

None.

MPC603:

• HID0, DMISS, DCMP, HASH1, HASH2, IMISS, ICMP and RPA

• IABR and EAR

MPC603e and MPC603ev:

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-19

• HID0, HID1, DMISS, DCMP, HASH1, HASH2, IMISS, ICMP and RPA

• IABR and EAR

MPC604:

• HID0, PMC1, PMC2, MMCR0, SDA, SIA, IABR, DABR, EAR and PIR

MPC604e and MPC604ev:

• HID0, PMC1, PMC2, PMC3, PMC4, MMCR0 and MMCR1

• SDA, SIA, IABR, DABR, EAR and PIR

MPC740 and MPC750:

• UPMC1, UPMC2, UPMC3, UPMC4, USIA, UMMCR0, UMMCR1, HID0 and HID1

• PMC1, PMC2, PMC3, PMC4, MMCR0, MMCR1 and SIA

• THRM1, THRM2, THRM3, ICTC, L2CR, IABR, DABR and EAR

Most registers are accessible via their symbolic names as well as the special-purpose
register number. For instance, the Link Register, SPR8, can be referenced as both “spr8”
and “LR”.

3.3.1.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• The processor caches are flushed/invalidated and disabled.

• The MPC10X L2 caches are flushed and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• The register context is restored.

• An RFI instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

3.3.1.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mpc6xx_lo.s
executes to perform basic initialization of the MPC6XX internal resources.

1. The MSR is written to place the processor in supervisor and big-endian modes with

CPU-Specific Information REV 0.2

3-20 dBUG Reference Manual MOTOROLA

instruction and data translation disabled.

2. The HID0 is written to invalidate the caches.

3. The TLBs are invalidated.

4. The floating-point registers are zeroed.

5. All special-purpose registers are zeroed to disable them.

6. A subroutine call to label mpc10x_init performs low-level board-specific initialization of
the external memory controller.

7. The stack pointer is changed to point into RAM.

Consult the board support package code for additional information on the initialization
sequence of the MPC6XX.

3.3.1.6 MISCELLANEOUS NOTES. Groups of special-purpose, floating-point and
segment registers can be displayed with the RD command.

rd sprs
rd fprs
rd srs

For PowerPC documentation, order Motorola Literature part MPCFPE/AD.

For MPC602 documentation, order Motorola Literature part MPC602/AD.

For MPC603 documentation, order Motorola Literature part MPC603/AD.

For MPC603e documentation, order Motorola Literature part MPC603E/AD.

For MPC604 documentation, order Motorola Literature part MPC604/AD.

For MPC604e documentation, order Motorola Literature part MPC604E/AD.

For MPC750 documentation, order Motorola Literature part MPC750/AD.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-21

3.3.2 MPC8XX

The MPC8XX family of processors integrate a PowerPC core with on-chip caches, a very
flexible memory controller and a communications module. The MPC8XX version of dBUG
supports these PowerPC processors:

• MPC821

• MPC823

• MPC850

• MPC860, MPC860SAR, MPC860T

3.3.2.1 COMMAND LINE OPTIONS. For commands that accept an optional <width> to
modify the memory access size, the valid values are:

.B 8-bit (byte) access

.H 16-bit (half-word) access

.W 32-bit (word) access

When no <width> option is provided, the default width is .W, 32 bits.

3.3.2.2 CPU-SPECIFIC COMMANDS. The IRD command displays the contents of the
internal peripheral registers.

The IMM command modifies the contents of the internal peripheral registers.

3.3.2.3 REGISTER SET. dBUG maintains these registers.

• GPR0-31 (referenced as r0-r31)

• IP (SRR0 is IP)

• MSR (SRR1 is MSR)

• CR, CTR, XER, LR, DEC, PVR, TBL, TBU, DSISR, DAR and IMMR

• IC_CST, IC_ADR, IC_DAT, DC_CST, DC_ADR and DC_DAT

• MI_CTR, MI_AP, MI_EPN, MI_TWC and MI_RPN

• MI_DBCAM, MI_DBRAM0 and MI_DBRAM1

• MD_CTR, MD_CASID, MD_AP, MD_EPN, MD_TWC and MD_RPN

• M_TW, MD_DBCAM, MD_DBRAM0 and MD_DBRAM1

Most registers are accessible via their symbolic names as well as the special-purpose
register number. For instance, the Link Register, SPR8, can be referenced as both “spr8”
and “LR”.

CPU-Specific Information REV 0.2

3-22 dBUG Reference Manual MOTOROLA

3.3.2.4 EXCEPTION PROCESSING. The following actions are performed when an
exception occurs.

• The register context is stored in the register context buffer.

• The processor caches are flushed/invalidated and disabled.

• Appropriate processing of the exception.

If code execution is to continue after exception handling, the following actions are taken.

• The register context is restored.

• An RFI instruction starts execution of the code again.

The following actions are performed when an interrupt occurs.

• The volatile registers (as per the ABI) are stored on the stack.

• The appropriate interrupt handler is invoked.

The return value dictates whether execution continues or the register context stored and
control returned to dBUG.

3.3.2.5 BOARD SUPPORT PACKAGES. Out of reset, the code in file mpc8xx_lo.s
executes to perform basic initialization of the MPC8XX internal resources.

1. The MSR is written to place the processor in supervisor and big-endian modes with
instruction and data translation disabled.

2. Both instruction and data caches are invalidated.

3. The TLBs are invalidated.

4. A temporary stack is created in the internal dual-ported RAM.

5. Function mpc8xx_isb() is called to obtain the address at which to map the internal
peripherals.

6. The internal peripherals are mapped to the appropriate address.

7. Function mpc8xx_init() is called to perform all initialization of the MPC8XX resources.

8. The stack pointer is changed to point into RAM.

Consult the board support package code for additional information on the initialization
sequence of the MPC8XX.

3.3.2.6 MISCELLANEOUS NOTES. The special-purpose registers can be displayed with
the RD command.

rd sprs
For PowerPC documentation, order Motorola Literature part MPCFPE/AD.

For MPC821 documentation, order Motorola Literature part MPC821UM/AD.

REV 0.2 CPU-Specific Information

MOTOROLA dBUG Reference Manual 3-23

For MPC823 documentation, order Motorola Literature part MPC823UM/AD.

For MPC850 documentation, order Motorola Literature part MPC850UM/AD.

For MPC860 documentation, order Motorola Literature part MPC860UM/AD.

CPU-Specific Information REV 0.2

3-24 dBUG Reference Manual MOTOROLA

MOTOROLA dBUG Reference Manual 4-1

SECTION 4
WRITING DBUG BOARD SUPPORT PACKAGES

dBUG is a traditional ROM monitor/debugger designed for rapid platform bring-up. By
providing a small number of well-defined functions, dBUG can be fitted to a new hardware
platform very quickly.

4.1 OVERVIEW

Written in the C language, dBUG is a portable debugger engineered for systems designed
around Motorola’s MC68000, ColdFire and PowerPC processor architectures. dBUG
provides a common debugging interface for all these hardware systems. To accomplish this,
dBUG is modularized into three components:

• User interface component

• CPU-specific component

• Board-specific component

The user interface component consists of a set of standard commands which provide basic
debugging facilities. These commands are the same on all systems.

The CPU-specific component implements all details and services specific to the processor.
The user interface and board-specific components draw upon resources provided by the
CPU-specific component.

The board-specific component implements all the remaining services required by the user
interface and CPU-specific components. These services include platform initialization and
basic character input and output. The board-specific component also implements additional
commands and features which are required by the particular system.

The steps needed to write a board support package (BSP) for dBUG are detailed in the
sections below. Each BSP is called a project, in dBUG terminology. When appropriate,
examples are provided based upon the generic project template provided with dBUG.

Writing dBUG Board Support Packages REV 0.2

4-2 dBUG Reference Manual MOTOROLA

4.2 DIRECTORY STRUCTURE

The first step in writing a board support package is understanding the development
environment provided by dBUG. The dBUG source tree depicted in Figure 4-1 reflects its
modularity.

Figure 4-1. dBUG Source Tree

The directory dss/bin contains miscellaneous tools for building projects.

The directory dss/src/dbug/v2/uif contains the source to the user interface component.

The directory dss/src/dbug/v2/cpu contains the source to the CPU-specific component. An
entire subdirectory structure and source code base exists for the various processors
supported by dBUG.

The directory dss/src/dbug/v2/dev contains sample polling drivers for character input and
output.

The directory dss/src/include contains C header files for dBUG as well as processor header
files.

The directory dss/proj is where the source for the various BSPs is located. Under this
directory, each project has its own subdirectory. Projects must be located here, as all paths
to source files are relative to the project subdirectory. Figure 4-2 depicts the subdirectory
structure under each project.

dss

bin

src

proj

dbug/v2

libdbug

generic

cpu

uif

dev

include

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-3

Figure 4-2. Project Directory Structure

The directory generic/src/dbug contains the board-specific files. These files and the services
they provide are discussed in detail in the subsequent paragraphs.

The directory generic/src/dbug/comp contains the host toolchain specific files. Typically
these files are makefiles, linker script files and any assembly source files. The directory
comp will reflect the toolchain in use; for example, gnu or diab.

The directory generic/obj contains all object and listing files. In addition, the final dBUG
image is placed here when the build process completes.

Located in dss/proj/generic is the top-level makefile for building dBUG. The top-level
makefile invokes a subordinate makefile which performs the actual work.

The top-level and subordinate makefile scheme allows a single project source code base to
be compiled for various target CPUs and toolchains by invoking the appropriate subordinate
makefile. For example, the Motorola Integrated Development Platform supports MC680X0,
MC683XX and MCF5202 processors. With the appropriate subordinate makefiles, the same
BSP source files build dBUG for each of the supported processor and toolchain
combinations.

4.3 FILES IN THE BOARD SUPPORT PACKAGE
A number of files are needed to complete a board support package. Source files are needed
for the BSP itself, as well as makefiles and linker script files. The following files typically exist
for a dBUG project.

• config.h

• board.h

• board.c

• cmds.c

• comp/make.cpu

• comp/board.lnk

• comp/libdbug.a

• comp/vectors.o

src dbug compgeneric

obj

Writing dBUG Board Support Packages REV 0.2

4-4 dBUG Reference Manual MOTOROLA

• comp/scif.s

• comp/sc.c

File config.h is required to contain one item: the type of processor. A #define identifies the
CPU in use, which in turn directly affects which header files are automatically included. This
file may optionally #define DBUG_NETWORK to indicate that the TFTP network download
capability is to be available.

File board.h contains configuration information, definitions and prototypes specific to the
platform. Normally this file is #included by config.h to make it visible to all files in the BSP.

File board.c contains the board-specific routines that are required by dBUG. These routines
are listed in Table 4-1. Additional information is provided in 4.9 Board-Specific Functions.

File cmds.c contains the dBUG command set as well as the SET/SHOW options.

Other board-specific files for drivers, diagnostics or commands are located here as well.

The toolchain specific files are isolated into the comp subdirectory. Typically the files located
here are the subordinate makefile (comp/make.cpu), linker script (comp/board.lnk), board-
specific system calls (comp/scif.s and comp/sc.c), and the dBUG library and vector table.

Files comp/libdbug.a and comp/vectors.o are the dBUG library and vector table. The library
and vector table are specific to the toolchain and CPU in use. See 4.8 dBUG Libraries for
information about obtaining the appropriate library and vector table files.

Table 4-1. Required Board-Specific Functions

FUNCTION DESCRIPTION

board_init() Board initialization function
board_init2() Board initialization function
board_init3() Board initialization function
board_getchar() Character input
board_putchar() Character output
board_getchar_present() Test for character input
board_putchar_flush() Flush character output
board_dlio_init() Download Initialization
board_dlio_getchar() Download character input
board_dlio_vda() Download valid address
board_dlio_done() Download completion
board_get_baud() Get baud rate of dBUG port
board_set_baud() Set baud rate for dBUG port
board_reset() Board reset

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-5

4.4 CREATING THE BOARD SUPPORT PACKAGE

The first stage of creating the BSP is to do the minimum work necessary to allow dBUG to
boot. Once dBUG is able to boot, features can be incrementally added.

4.4.1 Board Support Package Template Files
Accompanying dBUG is the source to a generic board support package which contains all
the basic files and functions needed for a dBUG port. It is recommended that the generic
board support package be copied into a new project directory as the basis for the new dBUG
port. In most cases, the generic templates need only be completed with the board-specific
details.

Alternatively, a completed dBUG BSP with similar features may serve well as a starting
point.

4.4.2 Initial Board Support Package
The steps for completing the initial board support package are straightforward.

1. Set the LIBDBUGHOST environment variable. See 4.8 dBUG Libraries for more
information.

2. Edit config.h and define the appropriate CPU. See dss/src/include/cpu/cpu.h for a
complete list of supported processors. Do NOT define DBUG_NETWORK at this time.

3. Edit board.h to provide any necessary prototypes, data structures or definitions.
Memory map and device definitions provided in this file often prove useful.

4. Edit board.c and provide the details to the required board-specific functions listed in
Table 4-1.

5. Create any required CPU-specific functions. For example, the integrated processors
supported by dBUG require board-specific initialization of the integrated peripherals.
See Section 3 Writing dBUG Board Support Packages for details on the CPU-specific
functions.

6. Edit the files comp/make.cpu and comp/board.lnk to accommodate the toolchain in
use. Exact details for configuring the toolchain and linker files are beyond the scope of
this document, and must be referred to the host toolchain documentation. Be careful
to place ROM and RAM sections correctly!

7. Modify the top-level project makefile to invoke the correct subordinate makefile and
define the correct output directory.

8. Modify the subordinate makefile and declare the macro BOARD appropriately; it must
match a value used in config.h.

Upon completing the above steps, executing make in the project directory begins the
compilation of the board support package.

Writing dBUG Board Support Packages REV 0.2

4-6 dBUG Reference Manual MOTOROLA

4.5 DEBUGGING THE BOARD SUPPORT PACKAGE

After building the BSP, some debugging may be necessary. The two most problematic areas
requiring debug are the initialization code and toolchain related issues.

4.5.1 dBUG Run-Time Entry Points
To aid the debugging of initialization code, it is useful to know the execution path of dBUG
out of reset. The execution path at reset performs all basic initialization of the system.

The reset execution path as well as the other run-time execution paths are detailed below.

dBUG obtains control at three primary entry points:

• Reset

• General Exception (excluding interrupts)

• Interrupts

The Reset entry point is executed at board power-up, board hard reset, or the RESET
command. The general code sequence executed is the following:

1. reset vector - The reset vector, located in vectors.o, points to asm_startmeup.

2. asm_startmeup - Located in libdbug.a, this code invalidates caches, disables interrupt,
caching and address translation, and sets other CPU internal resources to a disabled,
known state. Depending upon the processor, CPU-specific initialization code in the
board support package is executed. When complete, main() is invoked.

3. main() - Located in libdbug.a, this routine performs the remaining initialization of the
board and dBUG. This routine copies the vector table from ROM to RAM, copies
initialized data (.data section) from ROM to RAM, and zeroes uninitialized data (.bss
section). The following functions are then called, in sequence: board_init(), dbug_init(),
board_init2(), uif_cmd_ver(), board_init3(), and finally mainloop().

4. board_init() - Located in board.c, this routine, at a minimum, initializes the dBUG
console port.

5. dbug_init() - Located in libdbug.a, this routine performs the initialization of dBUG
internal variables and resources.

6. board_init2() - Located in board.c, this routine performs activities that require dBUG
resources (such as registering an interrupt handler), or activities prior to displaying the
dBUG banner (such as displaying the amount of installed memory).

7. uif_cmd_ver() - Located in libdbug.a, this function displays the dBUG version banner.

8. board_init3() - Located in board.c, this routine performs any activities prior to entering
the interactive dBUG> command prompt (such as booting an operating system or
other system software).

9. mainloop() - Located in libdbug.a, this routine enters into an infinite loop which displays
the dBUG> command prompt and processes user input.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-7

The General Exception entry point is encountered during memory access errors,
breakpoints, single instruction tracing, and other general exceptions. The general code
sequence executed is the following:

1. exception vector - The vector, located in vectors.o, points to asm_exception_handler.

2. asm_exception_handler - Located in libdbug.a, this code flushes and disables caches,
disables interrupts and address translation, and stores the register context. When
complete, cpu_handler() is invoked with the exception number.

3. cpu_handler() - Located in libdbug.a, this routine handles the exception. In most
cases, the exception number and context information is displayed, and control passed
to mainloop(). However, some exceptions (software breakpoints, for example) may
return from cpu_handler() to asm_exception_handler, at which point the context is
restored and execution resumes.

The Interrupt entry point is executed upon detection of a CPU interrupt. These interrupts are
generated primarily by peripheral devices and require servicing. The general code
sequence executed is the following:

1. interrupt vector - The vector, located in vectors.o, points to asm_irq_handler.

2. asm_irq_handler - Located in libdbug.a, this code saves volatile registers (as per the
calling convention/ABI) on the current stack, and invokes isr_execute_handler() with
the interrupt number.

3. isr_execute_handler() - Located in libdbug.a, this routine searches the table of
interrupt service routines, ISR, registered with dBUG. If a match is located, the ISR is
invoked, and its return value (TRUE or FALSE) is returned to asm_irq_handler. If no
match is found, FALSE is returned to asm_irq_handler.

4. If the return value from isr_execute_handler() is TRUE, indicating the interrupt was
serviced, then the context is restored and execution resumes. If the return value is
FALSE, the complete register context is saved, cpu_handler() is invoked to display the
exception information, and control passed to mainloop().

If user code takes over any of these entry points, then it is quite possible that dBUG will not
work properly, if at all.

Writing dBUG Board Support Packages REV 0.2

4-8 dBUG Reference Manual MOTOROLA

4.5.2 Compiler/Toolchain Considerations

An important toolchain issue to understand is the run-time memory footprint. For most
systems, dBUG executes from ROM or flash memory, and uses RAM starting at address
0x00000000. Table 4-2 illustrates the typical memory footprint for these systems.

The .text section contains the executable code for dBUG. The .data section contains
initialized data which is stored in ROM, but copied to RAM at boot-time. The .bss section is
the uninitialized data for dBUG that is zeroed at boot-time.

The symbol names in the left-hand column are defined in the linker script file, and evaluate
to a 32-bit value representing the appropriate address. For example, __DATA_RAM is the
address of the.data section in RAM.

In most systems, dBUG requires 128K of ROM and 64K of RAM. The ROM provides storage
for dBUG’s executable code and initialized data, while RAM contains a CPU vector table,
the run-time initialized and uninitialized data, heap, and stack space. The actual amount of

Table 4-2. dBUG Run-Time Memory Footprint

SYMBOL MEMORY SECTION COMMENT

... ...

__DATA_ROM
.data

dBUG’s initialized data is stored in ROM,
but copied to RAM at boot-time.

.text The executable code for dBUG.
... ...

__USER_SPACE

User RAM
This portion of memory is deemed usable
by downloaded user programs, normally
located at 0x00010000.

__SP_INIT

__SP_END
Stack Stack space for dBUG.

__HEAP_END

__HEAP_START
Heap Heap space for dBUG.

__BSS_END

__BSS_START
.bss

dBUG’s un-initialized data. It is cleared to
zero at boot-time.

__DATA_END

__DATA_RAM
.data

dBUG’s initialized data. It is copied from
ROM to RAM at boot-time.

__VECTOR_RAM
Vector Table

CPU vector table for dBUG, normally
located at 0x00000000.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-9

ROM and RAM required will vary depending upon the features added to dBUG as well as
the compiler in use.

To conserve RAM used by dBUG, declare all constant data with the C qualifier const or static
const. Constant initialized data will remain in ROM, thus not requiring any RAM at run-time.

To take advantage of the CPU architecture, compilers may produce sections other than
.text, .data, and .bss. The advantage of additional sections is that references to items
located in these sections are normally very quick; requiring a single instruction with an
embedded offset to access the item. The disadvantage is that at all times one or more CPU
registers must contain a pointer to the additional sections; this poses a problem for dBUG.
By the nature of the environment, dBUG cannot provide any protection between itself and
downloaded code, thus the values of CPU registers can be changed at any time by the
downloaded code. Therefore, to support additional sections, the CPU registers must be
managed at every possible entry point into dBUG (entry points are not just exceptions, but
include system calls, interrupt handlers and functions directly callable by downloaded code).
While it is possible to provide the necessary management, this significantly increases the
complexity of dBUG, while not necessarily guaranteeing its reliability. In short, limit the
compiler-generated sections to .text, .data, and .bss sections; items located in these
sections are referenced by the compiler with absolute addresses. Unless otherwise
specified, all dBUG libraries are built with only these standard three sections. Consult the
toolchain documentation for information about controlling the use of sections.

The dBUG libraries are built using compiler options to achieve specific goals (see the
discussion immediately above). Therefore, the board support package must be built using
the same compiler options. All makefiles for the libraries are contained in the libdbug project
and contain the compiler options used for building the libraries.

When interfacing assembly routines with C routines, the appropriate application binary
interface (ABI) must be used. The ABI defines the usage of CPU registers and how
parameters are passed between functions. In general, dBUG uses the ABI as defined by
System V Release 4 Unix, SVR4. Also, most toolchains use differing and incompatible
assembly source file formats, which adds to the difficulty of using assembly source files.

The placement of the dBUG vector table is an important toolchain issue. The linker must
place the dBUG vector table so that the CPU can access it at power-on reset. File vectors.o
contains the dBUG vector table, and since the dBUG vector table is normally placed first by
the linker, it is provided separately from libdbug.a.

4.6 ADDING FEATURES TO THE BOARD SUPPORT PACKAGE
Once the basic BSP is working, features and new commands are easily added to dBUG.

4.6.1 Adding Commands
dBUG provides a core set of commands for performing basic system debugging activities.
The command set can be extended to suit the particular board or application needs.

Writing dBUG Board Support Packages REV 0.2

4-10 dBUG Reference Manual MOTOROLA

When the user enters a command, two searches through the command table are performed
in order to locate the command. The first search seeks an exact match on the user-specified
command and a command name in the table. If this search fails, a second search is
performed seeking a match on the shortened command names.

The board-specific file cmds.c contains the dBUG command table.

UIF_CMD UIF_CMDTAB[] =
{
 UIF_CMDS_ALL
 CPU_CMDS_ALL
};
const int UIF_NUM_CMD = UIF_CMDTAB_SIZE;

The core command set is inserted with the macro UIF_CMDS_ALL, defined in dbug.h, and
any CPU-specific commands are inserted with the macro CPU_CMDS_ALL. Additional
commands are placed in the table following these macros. File dbug.h defines the command
table entry data structure.

typedef const struct
{

char * cmd; /* command name user types, i.e. GO */
int unique; /* num chars to uniquely match */
int min_args; /* min num of args command accepts */
int max_args; /* max num of args command accepts */
int flags; /* command flags (repeat, hidden) */
void (*func)(int, char **); /* actual function to call */
char * description; /* brief description of command */
char * syntax; /* syntax of command */

} UIF_CMD;

Field cmd is the command name as it is typed on the command line. Command names are
eight characters or less in length.

Field unique indicates the number of characters required to match for the short name of the
command. This value must be greater than zero, and less than the length of the command
name.

Field min_args indicates the minimum number of arguments the command requires. If the
user specifies fewer arguments than this field indicates, an error message is produced and
the command is not invoked. This field must be equal to or greater than zero.

Field max_args indicates the maximum number of arguments the command accepts. If the
user specifies more arguments than this field indicates, an error message is produced and
the command is not invoked. The value for this field must equal or exceed the value for
min_args, and may not exceed UIF_MAX_ARGS.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-11

Field flags is used to slightly modify the behavior of the command. Flag
UIF_CMD_FLAG_REPEAT indicates that the command is capable of rapid repeat
execution. This flag indicates that the user may enter the command once, and then press
<Return> to invoke subsequent executions of this command, i.e. the TRACE command.
Flag UIF_CMD_FLAG_HIDDEN prevents the command from being displayed in the HELP
menu.

Field func is the function to invoke when a command line matches the command name and
meets its argument requirements. Function func receives two arguments, the first is the
number of tokens on the command line (there is always at least one: the command), and the
second is a pointer to an array of pointers pointing to each token on the command line. This
scheme is similar to the invocation of the C language main() function.

Field description is the verbal description of the command displayed in the HELP menu.

Finally, field syntax describes the command usage and options. This information is
displayed in the HELP menu.

For examples, the core command entries are located in dbug.h.

4.6.2 Adding SET/SHOW Options

dBUG provides a core set of SET/SHOW options for configuring dBUG. The SET/SHOW
option set can be extended to suit the particular needs of the board.

When the user enters the SHOW command, the setting for the particular option is displayed.
If no option is specified, then all option values are displayed.

When the user enters the SET or SHOW command, two searches through the SET/SHOW
option table are performed in order to locate the option. The first search seeks an exact
match on the user-specified option and an option name in the table. If this search fails, a
second search is performed seeking a match on the shortened option names.

The board-specific file cmds.c contains the dBUG SET/SHOW option table.

UIF_SETCMD UIF_SETCMDTAB[] =
{
 UIF_SETCMDS_ALL
 CPU_SETCMDS_ALL
};
const int UIF_NUM_SETCMD = UIF_SETCMDTAB_SIZE;

The core option set is inserted with the macro UIF_SETCMDS_ALL, defined in dbug.h, and
any CPU-specific commands are inserted with the macro CPU_SETCMDS_ALL. Additional
options are placed in the table following these macros. File dbug.h defines the option table
entry data structure.

Writing dBUG Board Support Packages REV 0.2

4-12 dBUG Reference Manual MOTOROLA

typedef const struct
{
 char * option;
 int unique;
 int min_args;
 int max_args;
 int flags;
 void (*func)(int, char **);
 char * syntax;
} UIF_SETCMD;

Field option is the option name as it is typed on the SET/SHOW command line. Option
names are eight characters or less in length.

Field unique indicates the number of characters required to match for the short name of the
option. This value must be greater than zero, and less than the length of the option name.

Field min_args indicates the minimum number of arguments the option requires. The value
for this field must be at least one. If the user specifies fewer arguments than this field
indicates, an error message is produced. This field must be equal to or greater than zero.

Field max_args indicates the maximum number of arguments the option requires. If the user
specifies more arguments than this field indicates, an error message is produced. The value
for this field must equal or exceed the value for min_args, and may not exceed
UIF_MAX_ARGS.

Field flags is used to slightly modify the behavior of the command. Flag
UIF_CMD_FLAG_HIDDEN prevents the option from being displayed in the SHOW menu.

Field func is the function to invoke when a command line matches the option name and
meets its argument requirements. Function func receives two arguments. The first is the
number of tokens on the command line, and the second is a pointer to an array of pointers
pointing to each token on the command line. This scheme is similar to the invocation of the
C language main() function.

Finally, field syntax describes the option usage and values. This information is displayed by
SET.

Both the SET and SHOW commands use func. The indication of which command (SET or
SHOW) invoked func is indicated in its first argument. If the value of the first argument is
zero, one or two, then SHOW command invoked func to display option settings. If the value
is zero, then the SHOW command is displaying all option values. Otherwise, when the value
is three or greater, SET invoked func.

For examples, the common option entries are located in dbug.h.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-13

4.6.3 Adding TFTP Download Support

The steps necessary for utilizing the TFTP Ethernet download are more complex, due to the
Ethernet driver that must be written.

1. Edit config.h and #define DBUG_NETWORK.

2. Edit board.c and provide the board-specific functions needed during a network
download. These functions are listed in Table 4-3 and are detailed in Section 4.10
Optional Board-Specific Functions.

3. Write the Ethernet driver. Details on writing an Ethernet driver are beyond the scope
of this document; consult documentation for the Ethernet card or chip set. However,
Ethernet drivers in dss/src/dbug/v2/dev provide examples on using the dBUG
resources available to the driver.

4. The download functions in board.c need modification to accommodate the Ethernet
download path (variable uif_dlio indicates the download type is
UIF_DLIO_NETWORK). Function board_dlio_init() must register the interrupt handler
and initialize the Ethernet driver. Function board_dlio_getchar() needs to call
tftp_in_char(). Function board_dlio_done() must de-install the interrupt handler().

5. Depending upon the interrupt scheme, the interrupt handler may need to explicitly
clear the Ethernet interrupt. As such, the interrupt handler may be an intermediate
function which clears the interrupt, and in turn invokes the real Ethernet driver interrupt
handler.

To allow these changes to take effect, perform a make clean followed by a make. (The
definition of DBUG_NETWORK affects other conditional macros, thus requiring the make
clean at least once.) Once built, the dBUG command DN performs the network download.

Table 4-3. Optional Board-Specific Functions

FUNCTION DESCRIPTION

board_dlio_filetype() Determine download filetype
board_irq_enable() Enable interrupts
board_irq_disable() Disable interrupts
board_set_client() Set board IP address
board_get_client() Get board IP address
board_set_server() Set TFTP server IP address
board_get_server() Get TFTP server IP address
board_set_gateway() Set gateway IP address
board_get_gateway() Get gateway IP address
board_set_netmask() Set IP netmask
board_get_netmask() Get IP netmask
board_set_filename() Set default download filename
board_get_filename() Get default download filename
board_set_filetype() Set default download file type
board_get_filetype() Get default download file type

Writing dBUG Board Support Packages REV 0.2

4-14 dBUG Reference Manual MOTOROLA

4.7 RESOURCES AVAILABLE TO THE BOARD SUPPORT PACKAGE

Many resources are available for use by board support packages. All of the following
resources are defined in dss/src/include/dbug.h.

4.7.1 Standard C Library
dBUG uses and provides several functions in the standard C library. By providing these
standard C library functions, one dependency on the host toolchain is eliminated. Consult
ANSI C for information on these functions.

• isspace(), isalnum(), isdigit(), isupper()

• strcmp(), strncmp(), strcasecmp(), strncasecmp()

• strtoul(), strlen(), strcat(), strncat(), strcpy(), strncpy()

• memcpy(), memset()

• printf(), sprintf()

NOTE

Printf() and sprintf() currently do not support floating point
formats, and %b indicates a binary format.

4.7.2 User Interface Resources

Certain routines in the User Interface are available for BSPs that implement new commands
or obtain user input. Common messages are available as well.

• COPYRIGHT - dBUG copyright banner message.

• HELPMSG - Help banner.

• INVARG - Useful for error messages, contains “Error: Invalid argument: %s\n”.

• INVCMD - Contains “Error: Invalid command: %s\n”.

• INVREG - Contains “Error: Invalid register: %s\n”.

• INVALUE - Contains “Error: Invalid value: %s\n”.

• UIF_MAX_ARGS - This value is the maximum number of arguments allowed on the
command line.

• UIF_MAX_LINE - This value is the maximum length of command line input.

• UIF_VER_MAJOR - This value indicates the major revision of the common user
interface features.

• UIF_VER_MINOR - This value indicates the minor revision of the user interface.

• BASE - This variable indicates the user’s preference for converting strings to numbers.

• pause() - Function for providing rudimentary display paging.

• get_line() - Function for obtaining command line input.

• make_argv() - Function for parsing command line input into tokens.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-15

• get_value() - Function to convert a string or symbol name into a 32-bit value.

Additional details for the functions is provided in 4.11 dBUG Internal Functions.

4.7.3 CPU-Specific Resources

Certain routines and information in the CPU-specific portion are available for BSPs.

• CPU_STR - CPU name.

• CPU_VER_MAJOR - CPU-specific code major revision.

• CPU_VER_MINOR - CPU-specific code minor revision.

• context - This global data structure holds a copy of the CPU register context.

Many other functions exist which are used from within the User Interface, but are not
available to board support packages.

See Section 3 CPU-Specific Information for details on additional services provided by the
CPU-specific component.

4.7.4 Download Resources

The implementation for downloading files utilizes a simple byte-stream approach. During the
download, board_dlio_getchar() is called to return the next byte in the data stream.
However, the data stream can originate from a variety of sources. The source of the
download data is set in the appropriate user command and the download process initiated.
dBUG directly supports download via the console port, typically a serial port, or from an
Ethernet network using TFTP.

• uif_dlio - this variable indicates the source of the download data stream, typically either
UIF_DLIO_CONSOLE or UIF_DLIO_NETWORK.

• UIF_DLIO_CONSOLE - The data stream is obtained from the console port.

• UIF_DLIO_NETWORK - The data stream obtained via TFTP from the network.

When the download source is the network, dBUG processes the download data stream to
accommodate ELF, COFF, S-Record and binary files. The filetype (ELF, COFF, S-Record
or binary) is indicated on the DN command line, or can be derived from the download
filename extension.

• *.elf - Download filetype is UIF_DLIO_ELF.

• *.coff - Download filetype is UIF_DLIO_COFF.

• *.srec - Download filetype is UIF_DLIO_SREC.

• *.bin - Download filetype is UIF_DLIO_IMAGE.

Additional filename extensions can be associated with one of the above filetypes. The
board-specific function board_dlio_filetype() returns one of the above filetypes, or
UIF_DLIO_UNKNOWN. This function is documented in 4.10 Optional Board-Specific
Functions.

Writing dBUG Board Support Packages REV 0.2

4-16 dBUG Reference Manual MOTOROLA

As an example, these are the general steps for downloading from a parallel port.

1. Define the new download stream source, i.e. UIF_DLIO_PARALLEL in board.h (do not
conflict with the sources defined in dbug.h).

2. Modify the functions board_dlio_init(), board_dlio_getchar() and board_dlio_done() to
accommodate the new stream source.

3. Create the parallel port driver that is invoked from within board_dlio_init(),
board_dlio_getchar() and board_dlio_done().

4. Create a new user command, i.e. DP, that sets uif_dlio to the value
UIF_DLIO_PARALLEL, calls board_dlio_init(), then calls download_srecord() to
perform an S-record download, and finishes by calling board_dlio_done().

5. Add the new command to the dBUG command set.

Once dBUG is rebuilt, the new DP command can be used to download S-records from the
system’s parallel port.

4.7.5 Interrupt Handling Resources
dBUG provides a method for hooking CPU interrupts. By registering an interrupt handler
with dBUG, CPU register context save and restore operations are performed by dBUG, thus
relieving the user of the need to manage context preservation.

• isr_register_handler() - This function installs an interrupt service routine.

• isr_remove_handler() - This function removes a previously installed interrupt service
routine.

• ISR_DBUG_ISR - An argument to isr_register_handler(), this flag gives the handler
priority over other handlers installed on the same interrupt vector with ISR_USER_ISR.

• ISR_USER_ISR - An argument to isr_register_handler(), this flag indicates a lower
priority handler for the interrupt vector.

dBUG maintains a simple list of registered handlers. When an interrupt occurs, dBUG first
examines the list for a match on the interrupt number and ISR_DBUG_ISR. If a match is
found, the handler is invoked. If the handler returns FALSE, indicating that the interrupt was
not serviced, the search continues for another match on the interrupt handler and
ISR_DBUG_ISR. If the handler returns TRUE, then the search on ISR_DBUG_ISR stops.
When dBUG completes its search for the interrupt number and ISR_DBUG_ISR, it then
performs a search for the interrupt number and ISR_USER_ISR in the same fashion.

While dBUG itself is executing, all interrupts are disabled. For the CPU to recognize an
interrupt and invoke any interrupt service routine, interrupts must explicitly be enabled.
Furthermore, dBUG disables interrupts at all exception entry points, except handled
interrupts. Note that default settings for CPU control registers enable interrupts when
executing user code via the GO and GT commands.

Additional information on these functions is provided in 4.11 dBUG Internal Functions.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-17

4.7.6 Miscellaneous Resources

The following are used by dBUG, and are available for general use.

• TRUE - Evaluates to 1.

• FALSE - Evaluates to 0.

• NULL - Evaluates to 0.

• __USER_SPACE - Address of memory available for general use (and not used by
dBUG).

4.8 DBUG LIBRARIES
dBUG is provided in object format as a library of routines which can be linked with the board
support package to create a usable debugger. A dBUG library contains the common User
Interface component as well as the CPU-specific component.

4.8.1 LIBDBUGHOST Environment Variable

The LIBDBUGHOST environment variable is used to indicate on which host dBUG is being
built. The value for LIBDBUGHOST must be one of the supported hosts.

• SUNS - Sun Solaris Unix workstation

• WIN32 - Windows 95/NT personal computer

Binary files created on one host type are normally not compatible with binaries created on a
different host type. For example, a dBUG library built on a Sun Solaris machine is not usable
for building dBUG on a Windows machine. As a result, separate dBUG libraries must be
provided for each host. Thus the environment variable LIBDBUGHOST indicates the host
and is used to correctly locate binary (and other host-specific) files for building dBUG.

When creating the dBUG libraries, the LIBDBUGHOST environment variable is used to
locate the appropriate compiler as well as the destination directory for the resulting dBUG
library.

When creating board support packages, the LIBDBUGHOST environment variable is used
to select the proper binary files for libdbug.a and vectors.o. The environment variable is also
used in the makefiles to locate the appropriate compilers and their components.

In addition, the environment variable is used to determine host-specific information. For
example, the files libdbug/src/dbug/comp/compilers.* contain the paths to the supported
toolchains on the appropriate host.

It is recommended that the value for the LIBDBUGHOST environment variable be set in an
appropriate startup file.

Writing dBUG Board Support Packages REV 0.2

4-18 dBUG Reference Manual MOTOROLA

All libraries are located in the libdbug project. The directory arrangement reflects the
supported processors and toolchains, as illustrated in Figure 4-3.

Figure 4-3. dBUG Libraries

The libraries are arranged by target processor and then the toolchain vendor and version.
For example, the dBUG library located in libdbug/obj/mcf5200/diab40bE/SUNS was created
with a Sun Solaris-hosted Diab Data version 4.0b toolchain targeted for the ColdFire
MCF5200 processor. The trailing ‘E’ in the toolchain name indicates an ELF format library,
whereas ‘C’ indicates COFF format.

More information about these toolchains as it relates to the dBUG effort is provided below.

src

obj

dbug

diab

gnu

MC68EC0x0

libdbug

MCF520X

MPC60X

MCF5200

MPC8XX

diab

gnu

diab
gnu

diab
gnu

diab

gnu

diab

gnu

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-19

4.8.2 Diab Data, Inc.

Diab’s suite of tools includes cross-compilers for MC68000, ColdFire and PowerPC. dBUG
has been built using the following versions of Diab’s compilers:

• 3.6

• 3.7

• 4.0

• 4.1

The files in libdbug/src/dbug/diab illustrate which compiler options are used for building
dBUG.

See http://www.ddi.com for more information on Diab’s products.

4.8.3 GNU C
The popular GNU C compiler can also be configured as a cross-compiler for MC68000,
ColdFire and PowerPC targets. dBUG has been built using the following versions of GNU C.

• Gcc 2.7.2.2 + patch

• Gcc 2.7.2.3 + patch

• Gcc 2.8.0

• Gcc 2.8.1

The GNU assembler and linker are needed as well. The following versions have been used
to build dBUG.

• Binutils 2.8.1

• Binutils 2.9

• Binutils 2.9.1

dBUG libraries are available for these versions of the compiler, but none are tested. Every
now and then, bugs are discovered in the toolchain.

For MC68000 and ColdFire, the GNU cross-compiler is configured as a m68k-coff target for
use with the GNU assembler and linker. This configuration produces COFF object and
executable files.

For PowerPC, the GNU cross-compiler is configured as a powerpc-eabi target for use with
the GNU assembler and linker. This configuration produces ELF object and executable files.

The files in libdbug/src/dbug/gnu illustrate which compiler options are used for building
dBUG.

Writing dBUG Board Support Packages REV 0.2

4-20 dBUG Reference Manual MOTOROLA

See http://www.gnu.org for more information on GNU C and other products. GNU C and
Binutils distributions are located at ftp://prep.ai.mit.edu, and patches are available at ftp://
ftp.cygnus.com/pub/embedded.

4.8.4 Experimental GNU Compiler System

The Experimental GNU Compiler System, EGCS, is a derivative of the GNU C compiler. It
was created by a group of developers who were unhappy with the infrequent releases of
GNU C. These developers now actively work on the EGCS distribution and produce
snapshots weekly and more frequent releases of the compiler.

For all practical purposes, the EGCS compiler is a newer version of the GNU C compiler.
The EGCS compiler can also be configured as a cross-compiler for MC68000, ColdFire and
PowerPC targets. dBUG has been built using the following versions of EGCS.

• Egcs 1.0

• Egcs 1.0.1

• Egcs 1.0.2

• Egcs 1.0.3

• Egcs 1.1.1

• Egcs 1.1.2

The GNU assembler and linker are needed as well. The following versions have been used
to build dBUG.

• Binutils 2.8.1

• Binutils 2.9

• Binutils 2.9.1

dBUG libraries are available for these versions of the compiler, but none are tested. Be
aware that the EGCS effort is a work in progress. As such, bugs are found, features broken
and bugs introduced; all in the constant effort to improve the compiler.

For MC68000 and ColdFire, the EGCS cross-compiler is configured as a m68k-coff target
for use with the GNU assembler and linker. This configuration produces COFF object and
executable files.

For PowerPC, the EGCS cross-compiler is configured as a powerpc-eabi target for use with
the GNU assembler and linker. This configuration produces ELF object and executable files.

The files in libdbug/src/dbug/gnu illustrate which compiler options are used for building
dBUG.

See http://egcs.cygnus.com for more information on EGCS. Distributions are located at ftp:/
/egcs.cygnus.com/pub/egcs and Binutils distributions are located at ftp://prep.ai.mit.edu.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-21

4.9 BOARD-SPECIFIC FUNCTIONS

The following functions are needed for board support packages. These functions typically
reside in the file board.c.

Writing dBUG Board Support Packages REV 0.2

4-22 dBUG Reference Manual MOTOROLA

board_init() Board Initialization Function

Syntax:

void board_init (void);

Description:

This is the first of three board initialization functions invoked by dBUG. This
function performs the majority of board initialization.

Activities that must be completed by board_init() include: 1) dBUG console port
initialization, and 2) other peripheral initialization.

Until the dBUG console port is initialized, printf() will not work.

When board_init() returns, dBUG performs internal initialization.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

board_init2()
board_init3()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-23

board_init2() Board Initialization Function

Syntax:

void board_init2 (void);

Description:

This function is the second of three board initialization functions. Any initialization
of the board that draws on internal resources of dBUG may be performed here.

If not performed in board_init(), the console port used by dBUG must be initialized
in this function. Upon returning from board_init2(), dBUG invokes printf() in
displaying the start-up banner. Until the dBUG console port is initialized, printf()
will not work.

At this point, initialization of dBUG is complete. If necessary, hooks can be placed
in this function to perform operating system bootstrap or other system features.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

board_init()
board_init3()

Writing dBUG Board Support Packages REV 0.2

4-24 dBUG Reference Manual MOTOROLA

board_init3() Board Initialization Function

Syntax:

void board_init3 (void);

Description:

This function is the third of three board initialization functions. Any initialization of
the board that draws on internal resources of dBUG may be performed here.

Upon returning from board_init3(), dBUG displays the help message and the
dBUG command prompt, dBUG>.

If necessary, hooks can be placed in this function to perform operating system
bootstrap or other system features.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

board_init()
board_init2()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-25

board_getchar() Character input

Syntax:

int board_getchar (void);

Description:

This function obtains the character available on the dBUG console port.

This function must poll until a character is available.

Parameters:

None.

Return values:

Character input from dBUG console port.

Errors:

None.

See Also:

board_putchar()
board_getchar_present()

Writing dBUG Board Support Packages REV 0.2

4-26 dBUG Reference Manual MOTOROLA

board_putchar() Character output

Syntax:

void board_putchar (int ch);

Description:

This function outputs a character on the dBUG console port.

This function must not return until the character is output.

This function is called directly by printf().

Parameters:

ch The character to output.

Return values:

None.

Errors:

None.

See Also:

board_getchar()
board_putchar_flush()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-27

board_getchar_present() Test for character input

Syntax:

int board_getchar_present (void);

Description:

This function tests whether a character is available on the dBUG console port.

This function does NOT poll until a character is available, it merely tests for the
presence of a character.

Parameters:

None.

Return values:

TRUE Character is available.
FALSE Character is not available.

Errors:

None.

See Also:

board_getchar()

Writing dBUG Board Support Packages REV 0.2

4-28 dBUG Reference Manual MOTOROLA

board_putchar_flush() Flush character output

Syntax:

void board_putchar_flush (void);

Description:

This function is called prior to displaying the dBUG> prompt in order to flush
output characters on the dBUG console port.

For dBUG console ports which are serial ports, this function is typically empty.

Parameters:

None.

Return values:

TRUE Character is available.
FALSE Character is not available.

Errors:

None.

See Also:

board_putchar()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-29

board_dlio_getchar() Download character input

Syntax:

int board_dlio_getchar (void);

Description:

This function is called during a download to obtain the next data byte.

The global variable uif_dlio indicates the type of download being performed.
When the DL command is invoked, uif_dlio indicates UIF_DLIO_CONSOLE.
When the DN command is invoked, uif_dlio indicates UIF_DLIO_NETWORK.

For console downloads, this function returns the value obtained from
board_getchar(). For network downloads, this function returns the value obtained
from tftp_in_char().

Parameters:

None.

Return values:

Next character.

Errors:

None.

See Also:

board_dlio_done()
board_dlio_init()
board_dlio_vda()

Writing dBUG Board Support Packages REV 0.2

4-30 dBUG Reference Manual MOTOROLA

board_dlio_init() Download initialization

Syntax:

int board_dlio_init (void);

Description:

This function is called prior to performing a download to perform initialization or
activities needed to assist the download.

The global variable uif_dlio indicates the type of download being performed.
When the DL command is invoked, uif_dlio indicates UIF_DLIO_CONSOLE.
When the DN command is invoked, uif_dlio indicates UIF_DLIO_NETWORK.

For console downloads, typically there are no tasks for this function to perform.
However, for network downloads, this function is required to perform two tasks: 1)
register an interrupt service routine, and 2) initialize the network device.

For both console and network downloads, sometimes it is useful to enable
instruction (but not data) caching at this time.

Parameters:

None.

Return values:

TRUE Download can proceed.
FALSE Download can not proceed.

Errors:

None.

See Also:

board_dlio_done()
board_dlio_getchar()
board_dlio_vda()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-31

board_dlio_vda() Download valid address

Syntax:

int board_dlio_vda (ADDRESS addr);

Description:

This function is called during a download to determine if an address is a valid
download address.

A given 32-bit address is not always a valid address for placing download data.
An address that points to the dBUG reserved space, ROM, or I/O or un-populated
RAM is an invalid address.

At a minimum, this function compares the provided address against the known
dBUG reserved space and system RAM to determine if addr can be used to store
download data.

Parameters:

addr Address at which to download.

Return values:

TRUE addr is valid address at which to download.
FALSE addr is not a valid address at which to download.

Errors:

None.

See Also:

board_dlio_done()
board_dlio_init()
board_dlio_getchar()

Writing dBUG Board Support Packages REV 0.2

4-32 dBUG Reference Manual MOTOROLA

board_dlio_done() Download completion

Syntax:

void board_dlio_done (void);

Description:

This function is called after completing a download to stop the download process.

 The global variable uif_dlio indicates the type of download performed. When the
DL command is invoked, uif_dlio indicates UIF_DLIO_CONSOLE. When the DN
command is invoked, uif_dlio indicates UIF_DLIO_NETWORK.

For console downloads, typically there are no tasks for this function to perform.
However, for network downloads, this function is required to de-register the
interrupt service routine and graceful turn off the Ethernet device.

If instruction caching is enabled during the download, then this function should
disable caching.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

board_dlio_init()
board_dlio_getchar()
board_dlio_vda()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-33

board_get_baud() Get baud rate of dBUG port

Syntax:

int board_get_baud (void);

Description:

This function is called to obtain the baud rate of the dBUG console port. The value
returned by this function is used in configuring the console port at boot time.

This function is also invoked by the SHOW BAUD command.

To fix the baud rate at a particular value, simply return the desired value and make
board_set_baud() do nothing.

If possible, the baud rate value should be obtained from persistent storage, i.e.
non-volatile RAM.

Parameters:

None.

Return values:

Typical values are 9600, 19200 and 38400.

Errors:

None.

See Also:

board_set_baud()

Writing dBUG Board Support Packages REV 0.2

4-34 dBUG Reference Manual MOTOROLA

board_set_baud() Set baud rate of dBUG port

Syntax:

void board_set_baud (int baud);

Description:

This function is called to set the baud rate of the dBUG console port. Because this
value is used in configuring the console port at boot time, it is helpful if this value
is stored in persistent memory, i.e. non-volatile RAM.

This function is invoked by the SET BAUD command.

If a fixed baud rate is being used, then this function should be empty.

If possible, the baud rate value should be stored in persistent storage, i.e. non-
volatile RAM.

Parameters:

baud Typical values are 9600, 19200 and 38400.

Return values:

None.

Errors:

None.

See Also:

board_get_baud()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-35

board_reset() Board reset

Syntax:

void board_reset (void);

Description:

This function is invoked by the RESET command to reset the board.

This function contains code for a software-initiated reset. If no such mechanism
exists, then this function is empty and dBUG executes the same code sequence
as if a hard reset occurred.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

None.

Writing dBUG Board Support Packages REV 0.2

4-36 dBUG Reference Manual MOTOROLA

4.10 OPTIONAL BOARD-SPECIFIC FUNCTIONS

These functions are needed only if the TFTP download feature is utilized.

board_dlio_filetype() Determine download filetype

Syntax:

int board_dlio_filetype (char *fn, char *ext);

Description:

This function determines the download filetype (ELF, COFF, S-Record or Binary)
from the filename. dBUG examines the extension (that part of the filename
following the period, if one exists) to determine the download filetype if none is
specified on the DN command line.

Parameters:

fn Pointer to the string containing the download filename.
ext Pointer to the filename extension

Return values:

UIF_DLIO_UNKNOWN Download filetype is not know.
UIF_DLIO_ELF Download filetype is ELF.
UIF_DLIO_COFF Download filetype is COFF.
UIF_DLIO_SREC Download filetype is S-Record.
UIF_DLIO_IMAGE Download filetype is binary data.

Errors:

None.

See Also:

None.

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-37

board_irq_enable() Enable board interrupts

Syntax:

void board_irq_enable (void);

Description:

This function is used to enable board interrupts during the network download. It is
used in conjunction with board_irq_disable() to delineate critical section
processing during the download.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

board_irq_disable()

Writing dBUG Board Support Packages REV 0.2

4-38 dBUG Reference Manual MOTOROLA

board_irq_disable() Disable board interrupts

Syntax:

void board_irq_disable (void);

Description:

This function is used to disable board interrupts during the network download. It
is used in conjunction with board_irq_enable() to delineate critical section
processing during the download.

Parameters:

None.

Return values:

None.

Errors:

None.

See Also:

board_irq_enable()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-39

board_set_client() Set board IP address

Syntax:

void board_set_client (uint8 *ipaddr);

Description:

This function is used to store the Internet Protocol (IP) address of the board in
persistent storage. This function is invoked when the user enters the SET CLIENT
command.

If possible, the client IP should be stored in persistent storage, i.e. non-volatile
RAM.

Parameters:

ipaddr Pointer to the 4-byte IP address.

Return values:

None.

Errors:

None.

See Also:

board_get_client()

Writing dBUG Board Support Packages REV 0.2

4-40 dBUG Reference Manual MOTOROLA

board_get_client() Get board IP address

Syntax:

uint8 * board_get_client (uint8 *ipaddr);

Description:

This function is used to retrieve the IP address of the board from persistent
storage. This function is invoked when the user enters the SHOW CLIENT
command, and by the DN command.

If possible, the client IP should be obtained from persistent storage, i.e. non-
volatile RAM.

Parameters:

ipaddr Pointer to buffer for copying the 4-byte IP address.

Return values:

Pointer to the 4-byte IP address.

Errors:

None.

See Also:

board_set_client()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-41

board_set_server() Set server IP address

Syntax:

void board_set_server (uint8 *ipaddr);

Description:

This function is used to store the IP address of the server in persistent storage.
This function is invoked when the user enters the SET SERVER command.

If possible, the server IP should be stored in persistent storage, i.e. non-volatile
RAM.

Parameters:

ipaddr Pointer to the 4-byte IP address.

Return values:

None.

Errors:

None.

See Also:

board_get_server()

Writing dBUG Board Support Packages REV 0.2

4-42 dBUG Reference Manual MOTOROLA

board_get_server() Get server IP address

Syntax:

uint8 * board_get_server (uint8 *ipaddr);

Description:

This function is used to retrieve the IP address of the server from persistent
storage. This function is invoked when the user enters the SHOW SERVER
command, and by the DN command.

If possible, the server IP should be obtained from persistent storage, i.e. non-
volatile RAM.

Parameters:

ipaddr Pointer to buffer for copying the 4-byte IP address.

Return values:

Pointer to the 4-byte IP address.

Errors:

None.

See Also:

board_set_server()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-43

board_set_gateway() Set gateway IP address

Syntax:

void board_set_gateway (uint8 *ipaddr);

Description:

This function is used to store the IP address of the gateway in persistent storage.
This function is invoked when the user enters the SET GATEWAY command.

If possible, the gateway IP should be stored in persistent storage, i.e. non-volatile
RAM.

Parameters:

ipaddr Pointer to the 4-byte IP address.

Return values:

None.

Errors:

None.

See Also:

board_get_gateway()

Writing dBUG Board Support Packages REV 0.2

4-44 dBUG Reference Manual MOTOROLA

board_get_gateway() Get gateway IP address

Syntax:

uint8 * board_get_gateway (uint8 *ipaddr);

Description:

This function is used to retrieve the IP address of the gateway from persistent
storage. This function is invoked when the user enters the SHOW GATEWAY
command, and by the DN command.

If possible, the gateway IP should be obtained from persistent storage, i.e. non-
volatile RAM.

Parameters:

ipaddr Pointer to buffer for copying the 4-byte IP address.

Return values:

Pointer to the 4-byte IP address.

Errors:

None.

See Also:

board_set_gateway()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-45

board_set_netmask() Set IP netmask

Syntax:

void board_set_netmask (uint8 *ipmask);

Description:

This function is used to store the IP netmask in persistent storage. This function
is invoked when the user enters the SET NETMASK command.

If possible, the IP netmask should be stored in persistent storage, i.e. non-volatile
RAM.

Parameters:

ipmask Pointer to the 4-byte IP netmask.

Return values:

None.

Errors:

None.

See Also:

board_get_netmask()

Writing dBUG Board Support Packages REV 0.2

4-46 dBUG Reference Manual MOTOROLA

board_get_netmask() Get IP netmask

Syntax:

uint8 * board_get_netmask (uint8 *ipmask);

Description:

This function is used to retrieve the IP netmask from persistent storage. This
function is invoked when the user enters the SHOW NETMASK command, and
by the DN command.

If possible, the IP netmask should be obtained from persistent storage, i.e. non-
volatile RAM.

Parameters:

ipmask Pointer to buffer for copying the 4-byte IP netmask.

Return values:

Pointer to the 4-byte IP netmask.

Errors:

None.

See Also:

board_set_netmask()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-47

board_set_filename() Set default download filename

Syntax:

void board_set_filename (char *filename);

Description:

This function is used to store the default filename for network downloads in
persistent storage. This function is invoked when the user enters the SET
FILENAME command.

If possible, the filename should be stored in persistent storage, i.e. non-volatile
RAM.

Parameters:

filename Pointer to the filename.

Return values:

None.

Errors:

None.

See Also:

board_get_filename()

Writing dBUG Board Support Packages REV 0.2

4-48 dBUG Reference Manual MOTOROLA

board_get_filename() Get default download filename

Syntax:

char * board_get_filename (char *filename);

Description:

This function is used to retrieve the default network download filename from
persistent storage. This function is invoked when the user enters the SHOW
FILENAME command, and by the DN command.

If possible, the filename should be obtained from persistent storage, i.e. non-
volatile RAM.

Parameters:

filename Pointer to buffer for copying the filename.

Return values:

Pointer to the filename.

Errors:

None.

See Also:

board_set_filename()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-49

board_set_filetype() Set default download filetype

Syntax:

void board_set_filetype (int filetype);

Description:

This function is used to set the default filetype for network downloads. This
function is invoked when the user enters the SET FILETYPE command.

If possible, the filetype should be stored in persistent storage, i.e. non-volatile
RAM.

Parameters:

filetype The download filetype, either UIF_DLIO_SREC,
UIF_DLIO_ELF, UIF_DLIO_COFF or
UIF_DLIO_IMAGE.

Return values:

None.

Errors:

None.

See Also:

board_get_filetype()

Writing dBUG Board Support Packages REV 0.2

4-50 dBUG Reference Manual MOTOROLA

board_get_filetype() Get default download filetype

Syntax:

int board_get_filetype (void);

Description:

This function is used to retrieve the default network download filetype. This
function is invoked when the user enters the SHOW FILETYPE command, and by
the DN command.

If possible, the filetype should be obtained from persistent storage, i.e. non-
volatile RAM.

Parameters:

None.

Return values:

The download filetype, either UIF_DLIO_ELF, UIF_DLIO_COFF,
UIF_DLIO_SREC or UIF_DLIO_IMAGE.

Errors:

None.

See Also:

board_set_filetype()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-51

4.11 DBUG INTERNAL FUNCTIONS

These functions are provided in libdbug.a and are usable by the board support package.

pause() Simple console pagination

Syntax:

int pause (int *rows);

Description:

This function provides a simple method for console pagination. On each
invocation of this function, the value rows is incremented by one. When the value
of rows surpasses 21, the banner is displayed and awaits user input to continue.

 Press <ENTER> to continue.

This function is NOT invoked automatically by printf(); instead, this function must
be explicitly invoked when pagination is desired. To use this function, the user
must initialize a local integer variable to the value zero, then after displaying a
single line of output, invoke pause(). The variable rows should track the number
of lines of output displayed to the console. When the user selects <Enter> to
continue, the variable rows is reset to zero.

The user may select <Enter> to continue, and q or Q or <Ctrl> C to indicate a
desire to abort the display.

Parameters:

rows Integer value indicates current number of lines of output
displaying on the console.

Return values:

TRUE User selected q or Q or <Ctrl> C.
FALSE User selected <Enter>.

Errors:

None.

See Also:

None.

Writing dBUG Board Support Packages REV 0.2

4-52 dBUG Reference Manual MOTOROLA

get_line() Console input

Syntax:

char * get_line (char *line);

Description:

This function obtains a line of input from the dBUG console and places it into the
user-supplied character buffer line. The backspace and delete keys provide a rub-
out feature, the only editing capability. This function returns when the user has
pressed the <Enter> key. The buffer is properly terminated.

The character buffer must be of size UIF_MAX_LINE or greater.

Parameters:

line Pointer to the character buffer for the user input.

Return values:

This function returns a pointer to the head of the character buffer. This value is
equivalent to the value of line.

Errors:

None.

See Also:

make_argv()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-53

make_argv() Parse string into tokens

Syntax:

int make_argv (char *line, char *argv[]);

Description:

This function parses the NULL-terminated string line into tokens, and places
pointers to the resulting tokens into argv[]. This function is commonly used to
process user input.

Tokens are delineated by white space. As the function scans the string, it places
the NULL character \0 into the string in place of white space. In doing so, the token
becomes a properly NULL-terminated string. The number of tokens parsed is
returned.

The token list argv[] must be a minimum size UIF_MAX_ARGS plus one for a
NULL terminated list. The token list is NULL terminated upon completing the scan.

This function modifies the original string.

Parameters:

line Pointer to the character buffer to be processed. This
buffer will be modified.

argv Pointer to the array of character pointers which point to
the tokens. This array is NULL terminated.

Return values:

This function returns the number of tokens parsed.

Errors:

None.

See Also:

get_line()

Writing dBUG Board Support Packages REV 0.2

4-54 dBUG Reference Manual MOTOROLA

get_value() Convert string to number

Syntax:

uint32 get_value (char *str, int *success, int base);

Description:

This function converts the string str into a 32-bit unsigned number.

The function first attempts to locate the string in the symbol table. If a match is
found, the value of the symbol is returned.

Otherwise the function converts the string according to radix base. The radix is a
value 2 for binary, 8 for octal, 10 for decimal or 16 for hexadecimal. The value 0
for radix indicates that get_value() should determine the radix by examining the
string for radix indicators.

Parameters:

str Pointer to the character string to be converted.
success Pointer to an integer. This variable indicates whether or

not the conversion encountered errors.
base The radix for converting the string. This value must be

between 0 and 16 (inclusive).

Return values:

If no errors are encountered, this function returns a 32-bit unsigned value and
success is TRUE. If errors are detected, the value zero is returned, and success
is FALSE.

Errors:

For a given radix, certain characters are valid. Hexadecimal notation, for example,
allows the letters ‘0’ through ‘9’ and ‘A’ through ‘F’, but not the letter ‘G’. If an illegal
character is encountered, then success contains FALSE.

See Also:

strtoul()

REV 0.2 Writing dBUG Board Support Packages

MOTOROLA dBUG Reference Manual 4-55

isr_register_handler() Install an Interrupt Service Routine

Syntax:

int isr_register_handler (int type, int vector,int (*handler)(void *arg1, void *arg2),
void *arg1, void *arg2);

Description:

This function installs an interrupt service routine (ISR) for the indicated vector.
The type provides a relative priority for handlers which may be installed on the
same vector: type ISR_DBUG_ISR is serviced prior to ISR_USER_ISR. This
scheme allows dBUG to prioritize internal interrupt handlers over user-installed
interrupt handlers.

When an interrupt occurs, dBUG saves the registers on the stack and searches
the list of registered interrupt service routines. If an ISR for the appropriate vector
is located, dBUG executes the ISR by invoking

 handler(arg1, arg2);

dBUG examines the return value of the ISR to determine whether the interrupt
was successfully serviced. If the return value is TRUE, then dBUG restores the
registers and continues execution. Otherwise, dBUG dumps the register set to the
console and displays the dBUG> prompt.

NOTE: While any vector can be passed to this routine, the ISR will only be
invoked for vectors that are actually CPU interrupt vectors. For example, installing
an interrupt handler for the same vector as the bus exception vector will never be
invoked because the exception handling for the bus exception never examines
the list of interrupt service routines.

Parameters:

type Relative priority type of interrupt: ISR_DBUG_ISR or
ISR_USER_ISR.

vector CPU-specific vector number for the interrupt.
handler The address of the interrupt service routine.
arg1 Pointer to an implementation-specific value or data

structure.
arg2 Pointer to an implementation-specific value or data

structure.

Return values:

If TRUE is returned, the handler was successfully installed. Otherwise, the
handler was not installed.

Writing dBUG Board Support Packages REV 0.2

4-56 dBUG Reference Manual MOTOROLA

Errors:

None.

See Also:

isr_remove_handler()

Writing dBUG Board Support Packages REV 0.2

4-57 dBUG Reference Manual MOTOROLA

isr_remove_handler() Remove an Interrupt Service Routine

Syntax:

int isr_remove_handler (int (*handler)(void *arg1, void *arg2));

Description:

This function removes an interrupt handler for handler previously installed with
isr_register_handler().

Parameters:

handler Interrupt service routine address.

Return values:

If TRUE is returned, the handler was successfully un-installed.

Errors:

None.

See Also:

isr_register_handler()

Writing dBUG Board Support Packages REV 0.2

4-58 dBUG Reference Manual MOTOROLA

