

SCELBI'S GALAXY GAME

FOR THE '6800'

TABLE OF CONTENTS

Chapter ONE

Chapter TWO

Chapter THREE

Chapter FOUR

Chapter FIVE

Chapter SIX

Introduction

Operation of the Galaxy Program

System requirements

Data Table, Messages and Subroutines

Major Routines of Galaxy

'6800' Assembler Listing

Sample of Galaxy Operation

INTRODUCTION

Imagine yourself as captain of a space ship traveling throughout
the galaxy. Your mission is to seek and destroy all alien ships to
make the galaxy safe so that other ships from your planet may jour­
ney into outer space. Due to the urgency of the mission it must be
completed within a given time. If the mission is not completed with­
in the time allotted, the safety of all future voyages is in jeopardy.
Your space ship is supplied with a limited amount of fuel and
weapons so you must choose your course and attack strategy care­
fully. Mission control has placed space stations at various points in
the galaxy for refueling. A space station contains a limitless amount
of fuel and weapons. However, don't get caught too far from a space
station with your energy low or you may end up drifting endlessly
through space.

As an aid in searching the galaxy, the space ship is equipped with
a galaxy scanner which is capable of displaying three different de­
grees of detail. The short range scan provides an accurate picture of
the immediate quadrant through which the space ship is currently
traveling. Your location and that of any alien ships, stars, and space
stations in the quadrant are defined by exact sector coordinates. The
long range scan displays the contents of the eight quadrants sur­
rounding the quadrant you presently reside in. The wide angle
scanner provides a view of the total galaxy from which you can plot
your course.

The space ship is equipped with two types of weapons. The
PHASOR is an energy discharge device which homes in on all enemy
ships in the immediate area and directs specified amounts of energy
at each. This energy, if enough to destroy, will completely eliminate
the alien ship. However, should the alien ship survive the attack, it
will retaliate by shooting back at your ship. It is important that you
keep the energy in your ship's protective shields at sufficient levels
to withstand any possible retaliation from the enemy. The other
weapon available is the TORPEDO. It is capable of destroying any
alien ship on impact. The target must be in direct line of sight of
the space ship for the torpedo to reach its destination. A missed tor-

I-I

pedo shot results in immediate retaliation by the alien ship. Also, be
careful when there is a space station in the area. If the torpedo hits
it, the space station is destroyed.

Now, turn your imagination into the realm of reality by trans­
forming your small computer system into the control station of the
space ship. Each move by the space ship is controlled by the com­
puter operator and the responsibility of the total mission is placed on
the operator's shoulders. The GALAXY program presented here
will allow one to make this transformation by loading the program as
presented, and simply adding the appropriate I/O routines for one's
specific I/O setup. Or, it can be expanded by revising the command
operations or adding new commands to make the game more com­
plex, and modifying it to take advantage of special I/O devices which
the reader may have associated with one's computer system. The
number of possible variations are limitless. The operation of this
program is explained in detail to aid those that desire to make
revisions and additions to its operation.

1-2

OPERATION OF THE GALAXY PROGRAM

Before getting into the specifics of the SCELBI GALAXY pro­
gram, it is important that the reader understands the general opera­
tion of the program. As one might ii'Qagine, the programming will be
a bit intricate at times, so a good general knowledge of its operation
will help keep things in perspective. This section is also written so
that it may be used as an operating guide which may be referred to
when playing the game.

The object of the Galaxy game is to destroy all the alien ships in
the galaxy. The exact number of alien ships which must be destroyed
is defined in the initial message along with the number of stardates
one has to complete the mission, and the number of space stations
available in the galaxy for refueling. Each time a game is started, the
entire galaxy is set up in a random manner so that no two games will
be the same. The number of alien ships and space stations, and their
respective locations in the galaxy will also be different for each game.

The galaxy is made up of 64 quadrants arranged in an eight-by­
eight matrix. The quadrants are identified by the row number and
column number of its location in the matrix. The row numbers run
from one to eight starting with the top row. The column numbers go
from one to eight starting with the left-hand column. Within each
quadrant there are 64 sectors arranged in the exact same format as
the quadrants in the galaxy. There can exist only one galactic object
in a sector at anyone time. An illustration of the matrix is shown
on the following page.

The space ship used to traverse the galaxy in search of enemy ves­
sels contains several integral parts which allow it to carry out its
mission. First, there is the main storage bank which contains the
main supply of energy for the space ship. This energy is used to move
the ship through the galaxy, supply the power to fire the phasors
and torpedoes, and transfer energy to the protective shields. The
maximum energy capacity in the main storage bank is 5000 units.

1 - 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

The master control panel is used to enter commands to direct the
ship's movement, request scanner displays, fire phasors and torpe­
does, and transfer energy to the protective shields. It also displays
status reports to inform the operator of various conditions which
arise during the course of the mission. The master control panel re­
quires 10 units of energy for each command entered. It is also a posi­
tive action panel which means that once a command mode is entered,
the command sequence must be completed. The physical arrange­
ment of the master control panel will depend on the I/O facilities of
the individual computer system.

The alien ships which are to be destroyed have the following
properties. First, a protective shield, similar to the space ship's
shields, surrounds the alien ship. This shield can contain from 0 to
1023 units of energy. This supply of energy is depleted by a phasor
shot from the space ship in direct proportion to the amount of
phasor energy which reaches the shield. Next, the alien ship has an
endless supply of energy to fire back at the space ship. This energy is
fired only in retaliation for an attack by the space ship. If a torpedo
shot misses, the alien ship responds with a ph as or of 200 units of

1-2

energy. If a phasor does not destroy the alien ship, a phasor with 1/4
of the amount of energy left in the shields of the alien ship is fired
at the space ship. The alien ship is destroyed by the direct hit of a
torpedo, by a phasor which removes all of its shield energy, or by the
space ship colliding with the alien ship.

Space stations are scattered throughout the galaxy to provide the
space ship with refueling locations. In order for the space ship to re­
fuel, it must maneuver to a sector alongside the space station where
it is considered "docked." When the space ship is docked, its energy
supply is replenished to its maximum capacity, and the torpedo
tubes are refilled to their capacity of 10 torpedoes. The energy and
torpedoes are transferred to the space ship only on the initial move
to dock with the space station. Remaining docked while using energy
to fire phasors and torpedoes will not provide the space ship with an
endless supply. To replenish its supply after attacking from a docked
position, the space ship must move away from, and then return to,
the space station. Also, when docking, if the space ship collides with
the space station, the space station will be destroyed.

The ship's weapons arsonal consists of a phasor, which discharges
high levels of concentrated energy, and a torpedo launcher. The
phasor "homes in" on all alien ships in the quadrant in which the
space ship is residing. The actual amount of energy fired is selected
by the operator. The torpedo must proceed in a straight line to the
object that it is to destroy. The maximum number of torpedoes, and
the amount of energy used for each, will be covered shortly.

The protective shields are the ship's defense against any attack by
an alien ship, or it's protection from damage should it accidently
collide with a space station or alien ship. The shields are capable of
absorbing an amount of energy equal to the amount of energy they
contain. It is important that the shield energy level be maintained
high enough to withstand any possible attack, since severe energy
losses occur if the shield energy goes to zero.

The stars, which are scattered throughout the galaxy, serve as
possible obstructions for the space ship when moving about in a
quadrant, and by blocking the direct line of fire of a torpedo. The
space ship must also be very careful in maneuvering around a star

1 - 3

because colliding with one means instant destruction.

When a command is to be input to the program, the following
message will be displayed:

COMMAND?

The operator must then enter a number from zero to six to initiate
one of the following command modes.

0- SPACE SHIP MOVEMENT COMMAND
1 - SHORT RANGE SCAN COMMAND
2 - LONG RANGE SCAN COMMAND
3 - GALAXY DISPLAY COMMAND
4 - SHIELD COMMAND
5 - PHASOR COMMAND
6 - TORPEDO COMMAND

COMMAND 0 - SPACE SHIP MOVEMENT

The movement of the space ship is controlled by designating both
course direction and distance. Movement within a quadrant requires
only the energy required for the command, which is 10 units. If the
move crosses one or more quadrant boundaries, 25 units are used for
each quadrant crossed. When the completion of any move results in
the space ship residing in a new quadrant, one stardate is used up.

When a movement command is entered, the course direction is
requested by the following message being displayed:

COURSE (1-8.5)?

Course direction is entered by specifying a two digit number as
indicated in the request of the value 1.0 to 8.5. This number indi­
cates the direction the space ship is to move according to the com­
pass on the following page.

1-4

3.0
3.5 2.5

4.5 1.5

5.0 --------:::::ii!5:::-------1.0

5.5 8.5

6.5 7.5
7.0

From this diagram, one can see that the possible directions start to
the right with a value of 1.0 and move around in a counterclockwise
manner with assignments made every 22112 degrees. If one desired to
move to the left and slightly down, the course would be entered as
5.5. This direction assignment is also used to define the trajectory of
a torpedo fired from the space ship, as will be discussed shortly.

After the direction has been entered, the distance, or warp factor,
is requested by the following message being displayed:

WARP FACTOR (0.1-7.7)?

As indicated, the warp factor is entered by specifying a two digit
value. The space ship will move a distance of one sector for each 0.1
designated in the input. The maximum value for either digit is seven.
Thus, to move to the same sector in the quadrant to the right of
one's current position, the course direction would be 1.0, and the
warp factor would be 1.0, not 0.8. This setup creates a one-to-one

1-5

relationship between the distance entered, and the number of quad­
rants and sectors moved through, since the quadrants are broken up
into an 8 x 8 matrix for the sectors.

There are several moves which one must be very careful to avoid
while traveling through the galaxy. One is that of moving out of the
boundaries of the galaxy. If this occurs, the space ship is lost forever
in outer space. Another move of equivalent consequence is a move
which causes the space ship to crash into a star. A star is considerably
larger than the space ship, and a collision results in the space ship
becoming completely engulfed in the gaseous composition of the star
and destroyed. The third move to avoid is a collision with a space
station. The force of the collision will result in the loss of 600 units
of energy from the space ship. Of a greater consequence, however, is
the aspect that the space station is wiped out on impact, since it con­
tains no defensive mechanism to absorb such a collision. This may
seriously damage the chances of completing a mission. The final
move is a "kami-kazi" move against an alien ship. This gives the de­
sired affect of destroying the enemy, but the space ship will sustain a
loss of 1500 units of energy which may leave it with very little
power. The possibility of colliding with another object is only
present while traveling in the quadrant that the space ship is in at the
time the movement command was entered. Once the ship moves out­
side the initial quadrant, the automatic guidance control takes over
and safely steers the space ship to its destination.

COMMAND 1 - SHORT RANGE SCAN

The short range scan provides a detailed picture of the contents of
the quadrant in which the space ship currently resides. A short range
scan uses only the energy required for the -command, which is 10
units. The precise sector location of the space ship, stars, alien ships,
and space stations are displayed for examination by the operator.
The following symbols are used to define each of the possible
objects.

<*> -SPACE SHIP
+++ - ALIEN SHIP
* -STAR

> 1 < -SPACE STATION

1-6

A sample of a short range scan display is shown below. The display
also provides the basic status information for the ship to the left of
the scan. The stardate will always start with a 30, and the last two
digits will approach the value of 50. When the stardate reaches 3050,
the space ship has run out of stardates and the mission has failed.
The condition status will be red if an alien ship is present in the cur­
rent quadrant, and green if there are no alien ships in the quadrant.
The quadrant and sector values refer to the current position of the
space ship. The first digit indicates the row number, and the second
digit indicates the column of the respective position in the galaxy.
The energy is the amount of energy currently contained in the main
storage bank. This energy will be a maximum value of 5000 units.
The next entry provides a count of the number of torpedoes avail­
able on the space ship. The final status entry indicates the amount of
energy in the protective shields.

-1--2--3--4--5--6--7--8-
1 *
2
3 +++
4 *
5 <*>
6
7 >1< *
8
-1- - 2 - - 3 - - 4 - - 5 - - 6 --7 - - 8-

STARDATE
CONDITION
QUADRANT
SECTOR
ENERGY
TORPEDOES
SHIELDS

EXAMPLE OF A SHORT RANGE SCAN

COMMAND 2 - LONG RANGE SCAN

3023
RED
6,5
5,3
5000
10
0000

The long range scan command gives an overall view of the eight
quadrants which surround the quadrant currently occupied by the
space ship. The 10 units of energy needed for a command are all that
is required to display a long range scan. The presence of alien ships,
space stations and stars are indicated for each quadrant. The contents
are indicated by a three digit number in each square. The left hand
digit indicates the number of alien ships in the quadrant; the center

1 - 7

digit indicates the number of space stations, and the right hand digit
indicates the number of stars. A sample of a long range scan is pre­
sented below.

L.R. SCAN FOR QUADRANT 6,5

1 112 1 001 1 006 1

1 001 1 113 1 104 1

1 203 1 007 1 004 1

COMMAND 3 - GALAXY DISPLAY

The contents of the entire galaxy may be displayed by requesting
a galaxy display. The display requires only the 10 units of energy ne­
cessary for the command. The contents of each quadrant are shown
in the same form as that used in the long range scan. From this dis­
play the operator may plan a long range course to successfully com­
plete a mission. The following is a sample of a galaxy display. The
reader may note the location of the long range scan quadrants as pre-

1 105 1 002 1 003 1 000 1 000 1 105 1 000 1 000 1

1 117 1 000 1 304 1 106 1 005 1 003 1 107 1 002 1

1 105 1 007 1 003 1 006 1 000 1 000 1 000 1 000 1

1 005 1 003 1 000 1 000 1 000 1 000 1 003 1 004 1

1 001 1 000 1 000 1 112 1 001 1 006 1 203 1 105 1

1 000 1 103 1 000 1 001 1 113 1 104 1 002 1 117 1

1 000 1 103 1 000 1 203 1 007 1 004 1 000 1 002 1

1 000 1 000 1 003 1 000 1 000 1 001 1 102 1 107 1

1-8

sen ted in the previous illustration.

COMMAND 4 - SHIELD CONTROL

The shield control command provides a means of transferring
energy between the main energy storage bank and the protective
shields. The shields must contain energy to protect the space ship
from attacks by the alien ships or from possible collisions with
either an alien ship or a space station. The energy required to make
the transfer is simply the 10 units required for the command. The
amount of energy transferred is specified by the operator in response
to the following message being displayed:

SHIELD ENERGY TRANSFER =

The operator then enters a four digit number indicating the
amount of energy desired to be transferred. When a four digit num­
ber is entered, the energy is transferred from the main storage bank
to the shield. If a four digit number is preceeded by a minus sign, the
energy is transferred from the protective shield back to the main
storage bank.

It is important that the amount of energy in the shields be main­
tained at sufficient levels to withstand any possible attack. If the
shield energy should become too low to absorb the energy of an
attack, the additional energy needed will be taken from the main
supply, and an additional 25 percent of the total energy loss will be
depleted from the main storage bank as a penalty. This 25 percent
loss is the amount of energy required to make repairs to the portions
of the space ship damaged by the energy that was not absorbed by
the shields.

COMMAND 5 - PHASOR CONTROL

The phasor control directs the phasor's energy at the alien ships
that reside in the immediate quadrant. The amount of energy that is
to be fired is specified by the operator in response to the following
message being displayed.

1-9

PHASOR ENERGY TO FIRE:

A four digit number is then entered and the phasor shots are fired
at the alien ships in the quadrant. The result of the phasor energy
shot at each alien ship is reported by the following message being
displayed:

ALIEN SHIP AT SECTOR X,Y: ENERGY = ZZZZ
or DESTROYED

The values of X and Y indicate the sector location of the alien ship,
and the message after the colon will indicate either the amount of
energy (ZZZZ) remaining in the alien ship, or that the alien ship has
been destroyed. If the alien ship is not destroyed by the phasor, one
quarter of its energy will be shot back at the space ship in retalia­
tion. This retaliation will be indicated by the following message:

LOSS OF ENERGY XXXX

Before specifying the amount of energy, the operator must be
aware of several properties of phasor energy. First, the amount of
energy to be fired is divided equally between the alien ships in
the quadrant. If there are two alien ships in the quadrant, and the
operator indicates 500 units of energy, 250 units will be fired at each
alien ship. Next, the amount of phasor energy that reaches the target
is governed by the distance the energy must travel. The distance is
figured by adding up the number of sectors in the horizontal and ver­
tical direction between the space ship and the alien ship. This
distance is then divided by four and the fraction is discarded; this
value is used as the distance factor. The distance factor is the num­
ber of times the amount of energy fired at an alien ship is to be
divided by two. The distance between the space ship and the alien
ship is therefore critical to the amount of phasor energy to reach the
alien ship. For example, if the space ship is at sector 2,4 and the alien
ship is at sector 6,6, the total number of sectors is equal to two in
the horizontal direction (6-4=2) plus four in the vertical direction
(6-2=4). This distance of six is divided by four and the whole number
one is used as the distance factor. This distance factor divides the
energy to be fired at the alien ship by 2. It is important that the
space ship be as close to the alien ship(s) as possible to achieve the

1 - 10

maximum effectiveness of a phasor shot.

COMMAND 6 - TORPEDO CONTROL

The torpedo control fires a torpedo in the direction specified by
the operator. Each torpedo requires 250 units of energy to fire, and
must be in the direct line of fire of the target. The trajectory of the
torpedo is entered by the operator in response to the following
message being displayed:

TORPEDO TRAJECTORY:

The trajectory is defined in the same format as the course specifi­
cation when entering a movement command. A two digit number is
entered indicating the direction in which the torpedo is to travel. The
track of the torpedo is then traced, and reported to the operator as it
moves from one sector to another. This is reported by a series of
tracking messages displayed in the following format:

TRACKING: X,Y
TRACKING: U,V
TRACKING: S,T

The values of X,Y, U,V, and S,T are the row and column of the
sectors through which the torpedo is passing. When the torpedo
either reaches the boundary of the quadrant or hits an object, an
advisory message is displayed. If the torpedo misses the alien ship
and reaches the boundary of the quadrant, or if the torpedo hits a
star, the following message will be displayed:

YOU MISSED! ALIEN SHIP RETALIATES
LOSS OF ENERGY = 200

Missing the alien ship causes it to retaliate by firing back 200 units of
energy at the space ship. If the torpedo hits a space station, not only
is the alien ship going to retaliate, but the space station is destroyed
since it has no defense against a torpedo. The following message is
displayed to inform the operator of this serious disaster.

1 - 11

SPACE STATION DESTROYED
YOU MISSED! ALIEN SHIP RETALIATES

LOSS OF ENERGY = 200

If all goes well, and the trajectory is right on target, the alien ship
will be destroyed and the following message will inform the operator
of the successful hit:

ALIEN SHIP DESTROYED

1 - 12

SYSTEM REQUIREMENTS

MEMORY USAGE FOR THE GALAXY PROGRAM

The Galaxy program presented in this book requires 4096 bytes of
RAM memory to operate in a 6800-based microcomputer system.
The program is broken down into the following blocks of memory.
Page 00 is used to store the course table, temporary data, the galaxy
display line, and the galaxy content table. Pages 01 through 04 con­
tain the messages used by the program. The subroutines reside on
pages 05 through 09, and the major program routines run from the
middle of page 09 to page OE. The lower half of page OF is used to
store the galaxy setup table and the upper half of page OF is reserved
for the user supplied input and output routines. The stack is ini­
tialized at the top of page OE. If more than 128 bytes are required
by the user for the I/O routines, and the user's system does not have
more than 4K of memory, the length of several of the messages can
be cut down to provide the additional memory space needed for
the I/O routines.

INPUT /OUTPUT REQUIREMENTS

The input/output requirements for the galaxy program presented
herein allow the reader to tailor the I/O portion of the program to
the specific devices that are available for use on one's computer
system. The character code used in this program is the 7 bit ASCII
code with the 8th bit, or parity bit, assumed to be at a '1.' The
game uses the full alphanumeric character set plus punctuation
marks. A table of the ASCII code required by this program is pre­
sented on the following page.

The input routine must input a character from the system input
device, such as a keyboard, and return to the calling program with
the ASCII code for the character entered in the A accumulator.
This input routine, labeled INPUT, can use the A accumulator to
input the character. If the B accumulator or the Index register must
be used, the input routine must save and then restore their contents
before returning. If the input device is not connected in some way

2-1

ASCII CHARACTER SET

CHARACTERS HEXA CHARACTERS HEXA
SYMBOLIZED REP SYMBOLIZED REP

A Cl Al
B C2 A2
C C3 A3
D C4 $ A4
E C5 % A5
F C6 & A6
G C7 A7
H C8 (A8
I C9) A9
J CA * AA
K CB + AB
L CC AC
M CD AD
N CE AE
0 CF / AF
P DO 0 BO
Q Dl 1 Bl
R D2 2 B2
S D3 3 B3
T D4 4 B4
U D5 5 B5
V D6 6 B6
W D7 7 B7
X D8 8 B8
Y D9 9 B9
Z DA BA
[DB BB

DC BC
DD BD
DE BE
DF ? BF

SPACE AO @ CO
CAR RET 8D RUBOUT FF
UNEFEED 8A

2-2

to the display device to provide automatic printout of the char­
acters entered, the INPUT routine should provide some means of
outputting the character received to the output device. This may be
achieved by echoing the character in the input routine, or by calling
the PRINT routine to perform the output. The INPUT routine is
called in the subroutines labeled DRCT and EIN, and in the major
routines labeled GALAXY, CMND and CRSE.

The output routine is required to output the character whose
ASCII code is contained in the A accumulator when the output
routine is called. The initial contents of the A and B accumulators
and the Index register are expected to be maintained upon returning
to the calling program. If it is necessary to use these registers, the
contents must be saved and then restored upon returning to the
calling program. The output routine is referred to by the label
PRINT. This routine is called by the subroutines MSG, NTN and
DRCT, and the major routine CRSE.

For systems that operate with the MIKBUG** program for I/O,
the following program listings maybe used for the INPUT and PRINT
routines.

INPUT JSR $EIAC
DRAA #$80
RTS

PRINT PSHA
JSR $EIDI
PULA
RTS

Call MIKBUG** input routine
Set the parity bit
Return to the calling program

Save character to be output
Call MIKBUG** output routine
Restore character in A
Return to calling program

** MIKBUG is a registered trademark of the Motorola Corporation

2-3

DATA TABLE, MESSAGES, and SUBROUTINES

DESCRIPTION OF THE GALAXY DATA ON PAGE 00

The major portion of the operation of the Galaxy game concerns
itself with the contents and manipulation of the data stored on page
00 from location 33 to 50. This table area is reserved for the storage
of information, such as the location of the space ship, stars, alien
ships, and space stations within the current quadrant, the amount of
energy contained in the main energy storage, the shields of the space
ship, and the energy in the shields of the alien ships. The count of
the number of torpedoes, space stations, alien ships, and stardates
remaining is also stored here. The format of the data in this table is
summarized below with a description of each following the sum­
mary.

LOCATIONS

33,34
35
36
37, 3D
3E
3F
40
41
42,43
44,45
46,47
48,49
4A,4B
4C
4D
4E
4F
50

FORMAT

XXXXXXXX
OOAASTTT
OORRRCCC
OORRRCCC
OORRRCCC
OORRRCCC
OORRRCCC
OORRRCCC
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XX XXX XXX
OORRRCCC
OOOOPPPP
OOOOOXXX
OOOXXXXX
OOXXXXXX

DEFINITION

Random number storage
Current quadrant contents
Sector location of space ship
Sector location of stars
Sector location of space station
Sector location of alien ship No.1
Sector location of alien ship No.2
Sector location of alien ship No.3
Dbl precision value of main energy
Dbl precision val. of shield energy
D.P. val. of alien ship No.1 energy
D.P. val. of alien ship No.2 energy
D.P. val. of alien ship No.3 energy
Crnt. quad. location of space ship
Number of torpedoes remaining
Number of space stations
Number of alien ships
Number of stardates remaining

3-1

LOCATIONS 33 and 34

The random number routine uses the contents of these two loca­
tions to generate and store the next random number.

LOCATION 35

The contents of the current quadrant in which the space ship is
located are stored in this byte. The bits indicated by TTT provide a
count of the number of stars in the quadrant; the S indicates a space
station present when set to "1;" and the bits AA indicate the number
of alien ships in the quadrant. Each time a new quadrant is entered,
this location is loaded with its contents. This is done to provide the
program with a convenient reference location for the contents of the
quadrant. All of the quadrants are set up at the start of the game,
and stored in the galaxy content table on the upper quarter of
page 00.

LOCATION 36

The row and column numbers for the current sector location of
the space ship are indicated by the RRR and CCC bits, respectively,
in this byte. The row and column numbers are represented by the
binary values zero through seven in this location. However, they
represent the row and column numbers one through eight when
presented in the output to the display device. This row and column
representation is used in the next 11 locations to indicate the loca­
tion of the stars, space stations, and alien ships in the quadrant. This
provides the program with a convenient means of checking for a
strike by a torpedo, or a collision of the space ship with another
object in the quadrant. The initial value stored in this location is set
up using the random number generator. After that time, the location
of the space ship is controlled by the operator.

LOCATIONS 37 through 3D

The location of the stars in the current quadrant is indicated by
the row and column numbers contained in this portion of the table.
The values RRR and CCC are of the same format as that presented
for the space ship. If there are less than seven stars in the current
quadrant, the unused locations in this table are set to octal CO. If
there are no stars in the quadrant, all of the locations will contain

3-2

co. The locations of the stars are set using the random number
generator each time a new quadrant is entered.

LOCATION 3E

The location of the space station in the current quadrant is stored
here. The row and column numbers are represented in the same for­
mat as the space ship and stars; they are set by use of the random
number generator each time a new quadrant is entered. If a space
station does not reside in the current quadrant, this location will
contain CO. At the completion of a move by the space ship, this
location is used in determining whether the space ship has docked
with the space station.

LOCATIONS 3F through 41

This portion of the table is used for the storage of the location of
the alien ships. The row and column representation is the same as
that presented for the previous nine locations. If less than three alien
ships are in the current quadrant, the unused locations will contain
CO. When an alien ship is destroyed, the corresponding location in
this table will be set to CO as part of the process of eliminating it
from the galaxy.

LOCATIONS 42 and 43

The binary value of the amount of energy in the main storage
bank is maintained in this location pair. The least significant half is
saved in location 42, and the most significant half in location 43. The
maximum value stored in this location is 5000, which is set up at the
start of a game and each time the space ship docks.

LOCATIONS 44 and 45

This location pair is used to store the binary value of the energy
contained in the space ship's protective shields. As with the main
energy storage, the least significant half is stored in location 44,
and the most significant half in location 45. The amount of energy
stored in this location is set up by a command entry, and is depleted
by attacks by alien ships.

3-3

LOCATIONS 46 through 4B

The binary values of the energy levels of the alien ships protective
shields are contained in this portion of the table. The least significant
half is in the even numbered byte, and the most significant half in
the odd numbered byte. The energy level for each alien ship is set up
using the random number generator when a space ship enters a quad­
rant. The energy indicated in these locations is the only defense an
alien ship has against a phasor attack.

LOCATION 4C

This location contains the row and column numbers of the space
ship's current quadrant location within the galaxy. The format is
the same as that for the sector location of the space ship defined
previously. The quadrant location is set up initially by use of the
random number generator, and is then controlled by the operator
as the space ship is moved throughout the galaxy. The contents of
this location are used to fetch the quadrant contents by setting the
two most significant bits to "1," and using this as a pointer to the
galaxy content table.

LOCATION 4D

A count of the number of torpedoes remaining in the space ship is
maintained here. This location is set to 10 at the start of each game
and each time the space ship docks with the space station. When a
torpedo is fired, this count is decremented by one until it reaches
zero which indicates there are no torpedoes left.

LOCATION 4E

This location maintains a count of the number of space stations in
the galaxy. If a space station is destroyed by collision or torpedo, the
count is decremented by one. When the count goes to zero, a
warning message is displayed to inform the operator that the last
space station has been destroyed.

LOCATION 4F

A count of the number of alien ships remaining is maintained in
this location. Each time an alien ship is destroyed, this location is de-

3-4

cremented by one. When it reaches zero, the mission is completed by
the successful destruction of all the alien ships.

LOCATION 50

This location indicates the number of stardates left in the game.
A stardate is used up when a move results in the space ship residing
in a new quadrant. This location will be decremented by one each
time this occurs. When this count goes to zero, the operator has run
out of time, and the game is over. This count is initially set to five
more than the number of alien ships.

The data area on page 00 is followed by a list of pointers. This
table of pointers begins at location 56 and runs up through location
75 on page 00. The pointers contained in this table point to various
locations in the data table that the index register is set to at different
times throughout the program. By setting up a table in this fashion,
the index register may be loaded by a two-byte direct addressing
mode instruction rather than a three-byte extended addressing mode
instruction, thereby shortening the program by approximately one
quarter of a page. This table of pointers is presented in the assembled
listing in Chapter Five.

TEXT MESSAGES USED IN THE GALAXY PROGRAM

The Galaxy program uses a number of messages to inform the
player of the current status of the game in progress, and to request
information from the player about the move that is to be made next.
These messages are stored in a large block of memory on pages 01
through 04. Each message is stored as a string of ASCII characters
with a zero byte as the terminator for the message. There are a num­
ber of these messages that require the addition of variable infor­
mation before the message is to be printed. These messages indicate
the current status of the space ship which the player must keep
watch over, the position of the objects in the galaxy, and the current
progress of a specific move, such as the energy used or the tracking
of a torpedo as it moves through a quadrant. The text of these
messages is presented next with the location of the variable data in­
dicated by X's.

3-5

"DO YOU WANT TO GO ON A SPACE VOYAGE?"

"YOU MUST DESTROY XX ALIEN SHIPS IN XX STARDATES
WITH X SPACE STATIONS"

" - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 -"

"X " (Short Range Scan Row)

"STARDATE 30XX"

"CONDITION XXXXX" (Green or Red)

"QUADRANT X,X"

"SECTOR X,X"

"ENERGY XXXX"

"TORPEDOES XX"

"SHIELDS XXXX"

"COMMAND?"

"COURSE (1-8.5)?"

"WARP FACTOR (0.1-7.7)?"

"L.R. SCAN FOR"

"1 XXX 1 XXX 1 XXX 1" (Long Range Scan Row)

"1 XXX 1 XXX 1 XXX 1 XXX 1 XXX 1 XXX 1 XXX 1 XXX 1"
(Galaxy Display Row)

"MISSION FAILED, YOU HAVE RUN OUT OF STARDATES"

"KA-BOOM, YOU CRASHED INTO A STAR.
YOUR SHIP IS DESTROYED."

"YOU MOVED OUT OF THE GALAXY.
YOUR SHIP IS LOST ... LOST"

3-6

"ABANDON SHIP! NO ENERGY LEFT!"

"CONGRATULATIONS, YOU HAVE ELIMINATED ALL OF
THE ALIEN SHIPS"

"LOSS OF ENERGY XXXX"

"DANGER - SHIELD ENERGY 000"

"SHIELD ENERGY TRANSFER = "

"NOT ENOUGH ENERGY"

"TORPEDO TRAJECTORY: "

"ALIEN SHIP DESTROYED"

"YOU MISSED! ALIEN SHIP RETALIATES"

"SPACE STATION DESTROYED"

"TRACKING: X,X"

"GALAXY DISPLAY"

"PHASOR ENERGY TO FIRE = "

"ALIEN SHIP AT SECTOR X,X:"

"ENERGY = XXXX"

"NO ALIEN SHIPS! WASTED SHOT"

"NO TORPEDOES"

"LAST SPACE STATION DESTROYED"

"CHICKEN! "

These messages require lK bytes of memory to store one byte at a
time. The text of many of these messages can be changed by the

3-7

reader to indicate varying degrees of emotion if desired. Or, if the
user provided I/O routines require more than the amount of memory
allocated, several of the messages can be shortened, or, if necessary,
deleted, to make room for the I/O programming. If the messages are
changed, the addresses in the program that refer to them must also
be changed. These locations in the program will be indicated when
the operating portion of the program is presented.

SUBROUTINES FOR THE GALAXY PROGRAM

There are many subroutines in this program. They are written to
perform various tasks common to many of the routines throughout
the Galaxy program. Among the types of functions they perform are
outputting messages to the printer device, converting binary numbers
to decimal (and vice-versa), setting up message contents with data to
be displayed, controlling the movement of objects in the galaxy, and
controlling the transfer of energy within the space ship. The subrou­
tines of the Galaxy program reside in IlltK bytes of memory on pages
05 through 09. This is equal to the amount of memory the operating
portion of the program requires. Thus, one can see that the Galaxy
program relies heavily on the subroutines to allow it to fit within 4K
of memory. This section provides the details on the purpose and
operation of the subroutines used in the Galaxy program.

The majority of the messages in the Galaxy program are outlined
by means of the subroutine labeled MSG. This routine, presented be­
low, outputs a string of ASCII characters stored in memory to the
output device. MSG begins its output with the character pointed to
by the index register when it is called. It will continue to output
characters by calling the PRINT routine until a zero byte is encoun­
tered in the character string. The routine then returns to the calling
program.

MSG LDAAX
BEQ MSGI
JSR PRINT
INX
BRAMSG

MSGI RTS

Fetch indexed character
Character = zero byte? Return
No, output character
Advance to next character
Continue printout
Output complete, return

3-8

The next subroutine is a random number generator used to pro­
vide random locations for the initial galaxy setup. It is also used in
the placement of the alien ships, stars, and space stations each time
a quadrant is entered by the space ship. The amount of energy an
alien ship contains is also set up by calling on the random number
subroutine. This random number routine provides a variation of
numbers sufficient for use in the Galaxy program, and it can be
applied to other programs requiring random number selection. The
listing for the RN routine is presented next.

RN LDAARNM
ROLA
EORARNM
RORA
INC RNM+$1
ADDARNM+$1
BVC SKIP
DEC RNM +$1

SKIP Sf AA RNM
RTS

Random number subroutine
Fetch random number and
Perform a series Df
Operations to generate
A random value

Store new random number
Return with random number in A

The Galaxy program performs a number of operations involving
the conversion of numbers from binary to decimal and vice versa for
inputting and outputting numbers. The next trio of subroutines per­
forms the conversion of dOUble precision binary whole numbers to
and from decimal, and also checks that digits entered on the key­
board fall within the range of the ASCII code for digits, namely BO
through B9. The binary-to-decimal routine, labeled BINDEC, con­
verts a single or double precision binary number to its decimal
equivalent up to five digits long, and stores the result in locations 51
through 55 on page 00. Accumulator B is set to 01 for a single pre­
cision number, and 02 for a double precision number, and the index
register is set to the least significant byte of the number to be con­
verted before the BINDEC subroutine is called. The decimal-to­
binary subroutine, labeled DCBN, converts the decimal values stored
in locations 51 through 54 on page 00 to the equivalent double pre­
cision binary number which is saved in location 28 for the least sig­
nificant half, and 29 on page 00 for the most significant half of the
binary value. The FNUM subroutine checks the memory location in­
dicated by the index register for a valid ASCII digit, and returns with
the N flag reset if it is a valid digit, or set if it is not. The listing for
these subroutines is presented next.

3-9

BINDEC

BNDC

BD
BD1

STXPNTR1
LDX PDG1ST
CLRX
CLR $Ol,X
CLR $02,X
CLR $03,X
CLR $04,X
LDX PNTR1
LDAAX
DECB
BEQ BNDC
LDAB $Ol,X
STAA STORE1
STAB STORE1+$1
LDX #$1027
STX STORE2
BSRBD
STAB DGT5TH
LDX *$E803
STX STORE2
BSRBD
STAB DGT4TH
LDX *$6400
STX STORE2
BSRBD
STABDGT3RD
LDAA "iI'$OA
STAA STORE2
BSRBD
STAB DGT2ND
LDAA STORE1
STAADGT1ST
RTS
CLRB
INCB
LDAA STORE1
SUBA STORE2
STAA STORE1
LDAA STORE 1 +$1
SBCA STORE2+$1
STAA STORE1+$1
BCCBD1
LDAA STORE1
ADDASTORE2
STAA STORE 1
LDAA STORE1+$1
ADCA STORE2+$1
STAA STORE1+$1
DECB
RTS

Save pointer temporarily
Set pointer to start of decimal table
Clear digit table

Set pointer to binary value
Get least significant half
Single precision?
Yes, most significant half = 0
No, get most significant half
Store LS half in temporary storage
Store MS half in temporary storage+1
Set up value for 10K
Store for subtract routine
Calculate 5th digit
Store value of 5th digit
Binary value for 1K
Store for subtract routine
Calculate 4th digit
Store value of 4th digit
Binary value for 100
Store for subtract routine
Calculate 3rd digit
Store value of 3rd digit
LS half value of 10 decimal
Store for subtract routine
Calculate 2nd digit
Store value of 2nd digit
Get unit value
Store value of 1st digit
Return to calling program
Clear decimal digit counter
Increment decimal digit
Fetch the least significant half
Subtract LS half of constant
Save LS half of result
Fetch most significant half
Subtract MS half of constant
Save MS half of result
If greater than 0, continue subtraction
Else, restore binary value
Add LS half back to result
Restore result in memory
Fetch MS half of result
Add MS half back to result
Restore result in memory
Decrement decimal digit to correct
Return

3 -10

DCBN CLR STORE2+$1 Clear MS half of result
LDAADGT1ST Fetch units digit
STAA STORE2 Store in work area
LDABDGT2ND Fetch ten's digit
BEQ DC1 Digit = O? Yes, do 100's digit
LDX #$OAOO Binary value of 10
STX STORE1 To be added B times
BSRTOBN Add 10's digit

DC1 LDABDGT3RD Get 3rd digit
BEQ DC2 Digit = O? Yes, do 1000's digit
LDX #$6400 Binary value of 100
STX STORE1 To be added B times
BSRTOBN Add 100's digit

DC2 LDABDGT4TH Get 4th digit
BEQDC3 Digit = O? Yes, finished
LDX -#$E803 Binary value of 1000
STX STORE1 To be added B times
BSRTOBN Add 1000's digit

DC3 RTS Return, binary value in STORE1

TOBN LDX #STORE2 Set pointer to binary value
JSRT01 Add value to STORE1
DECB Multiplier = O?
BNETOBN No, continue
RTS Yes, return

FNUM LDAAX Fetch ASCII character
CMPA =#=$BO Is character a number?
BMIFNUM1 No, return with N flag set
SUBA =#=$BA Valid number, return with
ADDA #$80 N flag reset

FNUM1 RTS

Setting up the sector location of the stars, alien ships, and space
station within a quadrant each time the space ship enters a new quad­
rant is performed by use of the following group of subroutines. When
a game is started, the galaxy contents are set up in the last 64 bytes
of page 00. The initial quadrant location of the space ship is then set,
and the quadrant contents are moved from the galaxy content table
to location 35 on page 00 by the QCNT subroutine. The NWQD sub­
routine is then called to set the location of the stars, space station,
and alien ships in the quadrant. NWQD begins by clearing the sector
locations of the galactic objects by storing CO in locations 37
through 41 on page 00. It then determines how many of each object
is contained in the quadrant, and calls on LOCSET to set the exact
sector location of each. As each location is set, it is checked against
the locations of the other objects in the quadrant by the MATCH

3 -11

subroutine. If the new location is already assigned to another object,
LOCSET selects a new location. As the final step in the NWQD sub­
routine, the energy in the shields of the alien ships is set to random
levels from 0 to 1023 in the data table. After the game is underway,
these same subroutines are called to set up the quadrant each time a
new quadrant is entered. The LOAD subroutine is called at the start
of the game and each time the space ship docks with the space
station to restore its energy and set the torpedo count to ten. The
listings of these subroutines are presented next.

NWQD LDXPSOLSS Set pointer to star table
LDAA #$CO Clear code in A
LDAA #$OB Counter in B

CLRI SfAAX Clear object location table
INX Increment table pointer
DECB Decrement counter
BNE CLR1 Not done? Clear more

LDABCQC Else get quadrant contents
ANDB =11= $07 Get number of stars
BEQ NWQDl If none, check space station
LDXPSOLSS Set pointer to star table
BSR LOCSET Set up star locations

NWQD1 LDAACQC Get quadrant contents
JSR ROTR3 Move to space station position
TAB Set up for LOCSET
ANDB =#=$01 Any space stations?
BEQ NWQD2 No, check alien ships
LDX PSLSS Fetch space station table location
BSR LOCSET Set position if present

NWQD2 LDAACQC Get quadrant contents
JSRROTR4 Position alien count
TAB Put count in B
ANDB #$03 Mask for count
BEQ LLAS No aliens, skip positioning
LDXPSLAS1 Set pointer to alien ship location
BSR LOCSET Assign alien ship locations

LDAS BSR LLAS Get random numbers
LDXPVASE1 Pointer to alien ship no. 1 shields
BSR LAS Store alien ship no. 1 energy
LDX PVASE2 Pointer to alien ship no. 2 shields
BSR LAS Store alien ship no. 2 energy
LDX PVASE3 Pointer to alien ship no. 3 shields

LAS STAAX Store least significant half value

3 - 12

ANDA #$03 Mask for most significant half
STAA $01 ,X Store most significant half

LLAS JMPRN Get random and return

LOCSET STXPNTR1 Store table pointer
BSR LLAS Fetch random location
ANDA #$3F Mask off most significant bits
BSRMATCH New location match others?
BEQ LOCSET+$2 Yes, find new location
LDXPNTR1 Fetch table pointer
STAAX Store random location
INX Table pointer to next object
DECB Decrement object counter
BNE WCSET Counter not =0, do next
RTS Table complete, return

MATCH LDX PSOLSS Set pointer to star table
MATCH2 CMPAX Same sector location?

BEQ MATCH1 Yes, match, return
INX Advance table pointer
CPXPDVME End of table?
BNE MATCH2 No, check next
INX Yes, reset Z flag
DEX

MATCH1 RTS Return

QCNT LDAACQLSS Fetch current quadrant
ORAA =N=$CO Form pointer to galaxy
JSR ATINX1 Set pointer to quadrant
LDAAX Fetch quadrant contents
STAACQC Store new quadrant contents
RTS Return

LOAD LDX =#:$8813 Store double precision value 5000
STXDVME In main energy store
LDX #$0000 Set shields to zero
STXDVSE
LDAA #$OA Load ten torpedoes on board
STAANTR
RTS Return to main program

ATINX1 CLR PNTR1 Clear M.S. half of pointer for page 00
ATINX STAA PNTR1+$1 Store A in least significant half of pntr

LDXPNTR1 Load pointer into index register
RTS

The next group of subroutines is called to indicate to the operator
that the game has ended due to the occurance of one of the follow-

3 -13

ing problems. Either the stardate time has run out (TIME), or the
space ship has moved out of the known galaxy (LOST), or the space
ship has smashed into a star (WPOUT), or the space ship has run out
of energy (EOUT). These subroutines print an advisory message, and
then jump to the beginning of the program to inquire whether the
operator desires to try again. The listings for these subroutines are
presented next.

TIME LDX #$025D Stardates time run out· player loses

DONE JSRMSG Print message and start
JMPGALAXY A new game

LOST LDX #$02C8 Out of known galaxy
BRA DONE Player loses

WPOUT LDX #$028D Smashed into star
BRA DONE Player loses

EOUT LDX =#=$0497 Out of energy
BRA DONE Abandon ship

The next group of subroutines deals with setting up various mes­
sages for the output display device. The first subroutine, DIGPRT,
fetches a digit stored in memory, forms the ASCII equivalent, and
stores the ASCII code in the message to be printed. The index regis­
ter must be set to the location of the least significant digit in the
message, and the accumulator B must contain a binary count of the
number of digits to be placed in the message. The BCD digits must
reside in locations 51 through 54 on page 00 before this subroutine
is called. The listing for this subroutine is now presented.

DIGPRT STX PNTR1
STS PNTR2
LDSPNTR1
LDXPDG1ST

DGPRT1 LDAA X
INX
ORAA :#=$BO
PSHA
DECB
BNE DGPRT1
LDSPNTR2
RTS

Save message digit location pointer
Save stack pointer temporarily
Set stack pointer to 1st digit location
Set index to 1st digit
Get digit from storage
Advance index to next digit
Form ASCII code
Store in message
Decrement digit counter
Not =O? Continue
Equals 0, restore stack pointer
And return

3 - 14

ROWSET is used by the short range scan routine to set up the
contents of each row before it is printed. ROWSET first clears the
row message by filling it with space characters. It then stores the
ASCII code for the row number at the beginning of the message. The
location of all of the objects contained in the quadrant is then
checked to determine whether they are present in the row being pre­
pared for output. If one or more of the objects are located in the
row, the ASCII code for the symbolic representation of each is
stored in the row message at the proper column location. The sub­
routine RWPNT is used to check for the location of each object, and
to set a pointer to the column location within the row message for
storage of the object's ASCII representation. When ROWSET is
called, the B accumulator must contain the binary value of the row
number. When the row message is set up, the MSG subroutine is
called to print it. The listings for these two subroutines are given
next.

ROWSET LDX =#=$018F
LDAA =I#=$AO

RCLR STAAX
INX
CPX =IF $OlA 7
BNE RCLR

TBA
ORAA =I/=$BO
STAA #$018E
DECB
LDXPSLOSS
BSRRWPNT
BNE STR
LDAA #$BC
STAAX
LDAA =I/=$AA
STAA $Ol,X
LDAA =#=$BE
STAA $02,X

STR LDX PSOLSS
STXPNTR2

STRl BSR RWPNT
BNENXSTR
LDAA :/F$AA
STAA $Ol,X

NXSTR INC PNTR2+$1
LDXPNTR2

Set pointer to row message
Clear with ASCII space
Store space character
Advance pointer
Message cleared?
No, clear next

Form ASCII code for row
Store in message
Set up row number for checkout
Set pointer to object location table
Fetch space ship location
In this row?
Yes, store space ship
Code for printout

Set a star table pointer

Is star in this row?
No, pointer to next star
Yes, store star code
In proper location
Increment star table pointer
Put new pointer in index

3-15

CPX PSLSS End of star table?
BNE SfR1 No, check next star

BSR RWPNT Space station in this row?
BNEAS No, look for alien ships
LDAA 4/:-$BE Yes, store space station
SfAAX Code for printout
LDAA #$B1
STAA $Ol,X
LDAA #$BC
STAA $02,X

AS LDXPSLAS1 Set alien ship table pointer
SfXPNTR2

AS1 BSR RWPNT Alien ship in this row?
BNENXAS No, look for next ship
LDAA #$AB Yes, store code for alien
SfAAX Ship printout
SfAA $Ol,X
SfAA $02,X

NXAS INC PNTR2+$1 Advance alien ship table pointer
LDXPNTR2 Get new pointer
CPXPDVME End of table?
BNE AS1 No, try next alien
LDX :#$018C Set pointer to print short range scan &
JMPMSG Return

RWPNT LDAAX Fetch entry location
BMIRWPNT1 No, return
JSR ROTR3 Position row entry
ANDA #$07 Separate row entry
CBA Is row = current row?
BNE RWPNT1 No, return
LDAAX Yes, fetch column location
ANDA 4/::$07 Separate column location
STAA STORE1 Save column
ASLA Multiply by two
ADDA SfORE1 Form pointer to row message
ADDA 4/'$8F
CLR PNTR1 Set up pointer storage to page 01
INC PNTR1
JSRATINX Set index pointer from A
CLRA Set zero flag

RWPNT1 RTS Return

ROTR4 ASRA Shift accumulator A right
ROTR3 ASRA

ASRA
ASRA
RTS Return

3 -16

The subroutine labeled QUAD is used to place the row and
column location of the current quadrant into the QUADRANT R,C
message. The quadrant message is used in the short range scan and in
the heading for the long range scan. It fetches the quadrant location
from the data table and stores the ASCII code for the row and
column numbers in the message. It then calls MSG to print it. The
subroutine TWO is called to separate the row and column numbers
and store them in the proper locations in the message. TWO is also
used to place the row and column location of the current sector in
the SECfOR R,C message, which is part of the short range scan
routine. The listings for QUAD and TWO are presented next.

QUAD LDX *$0104
STXPNTRI
LDX :fFCQLSS
BSRTWO
LDX :#=$01C9
JMPMSG

TWO LDAAX
TAB
LDXPNTRI

Tl JSR ROTR3
ANDA #-$07
ADDA :#:$Bl
STAAX
ANDB #$07
ADDB 4I=$Bl
STAB $02,X
RTS

Store temp, quadrant
Message pointer
Index to quadrant location storage
Put digits in message
Index to quadrant message
Print quadrant message and return

Fetch row and column
Save row and column
Get message pointer
Position row number
Mask off other bits
Form ASCII code
Store in message
Separate column number
Form ASCII code
Store column in message

The final three subroutines of this group are used in the prepara­
tion and output of the long range scan and the galaxy display. The
NTN subroutine prints the dividing line between rows for each of the
printouts mentioned. It first outputs a carriage return/line feed com­
bination, and then prints as many hyphens as are defined in accumu­
lator B. QDSET takes the quadrant contents stored in accumulator A
and forms the ASCII code for the digits indicating the number of
alien ships, space stations, and stars in the quadrant, and stores them
in the message indicated by the index register. QDSET is called by
the galaxy display routine and LRR. LRR is a subroutine for the
long range scan routine that sets up each row of the scan for print­
out. The quadrant location in the center of the long range row being
prepared is contained in the A accumulator when LRR is called. If

3 -17

the left hand quadrant is outside the galaxy, it is set up to be printed
as all zeros. When the long range row is completed, the MSG routine
is called to output the row to the display device. The listings for
these subroutines are presented next.

NTN LDAB 4#=$13 Set counter 19 dashes
NT! LDAA #$8D Print carriage return

BSRNT3
LDAA #$8A Print line feed
BSRNT3

NT2 LDAA #$AD ASCII code for dash
BSR NT3 Print '-'
DECB Decrement counter. =O?
BNE NT2 No, print more dashes
RTS Yes, return

NT3 JMPPRINT

QDSET TAB Fetch quadrant contents
JSR ROTR4 Position alien ship number
ANDA :#$03 Mask alien ship number
ORAA :#=-$BO Form ASCII digit
STAAX Store in message
TBA Fetch quadrant contents
JSR ROTR3 Position space ship number
ANDA #$01 Mask space ship number
ORAA *$BO Form ASCII digit
STAA $01,X Store space ship in message
ANDB #$07 Mask star number
ORAB #$BO Form ASCII digit
STAB $02,X Store in message
RTS Return

CLC1 CLRA Clear column contents
BRA LR3 Print 000 quadrant

CLC2 CLRA Clear column contents
BRA LR4 Print 000 quadrant

LR5 JMP ATINX1
LRR ORAA #$CO Set pointer to galaxy

TAB
STAA STORE1 Save poin ter
ANDB :#=$07 First column?
BEQ CLC1 Yes, first column zero
DECA No, back one column
BSR LR5 Set quadrant pointer
LDAAX Fetch quadrant contents

LR3 LDX #$04C9 Set pointer to left quadrant
BSR QDSET Set quadrant contents

3 -18

LOAA STOREl
BSR LR5
LOAAX
LOX =#=$04CF
BSR QOSET
LDAA STOREl
TAB
ANOB #$07
CMPB =#=$07
BEQ CLC2
INCA
BSR LR5
LOAAX

LR4 LOX #$0405
JSRQOSET

LRP LOX :#=$04C5
LR6 JMP MSG

Get pointer
Set quadrant pointer
Fetch quadrant contents
Set pointer to middle quadrant
Set quadrant contents
Fetch quadrant location

Is quadrant in last column?

Yes, right column =0
Set to right quadrant
Set quadrant pointer
Fetch quadrant contents
Index to right quadrant
Set quadrant contents
Set pointer to long range row message
Print and return

The depletion of energy from the space ship's main storage bank
and its shields is an important function in this program. The follow­
ing group of subroutines is called to delete the energy from the ship,
and to check the energy level of the ship. The subroutine labeled
ELOS deletes the amount of energy contained in the index register
from the ship's protective shields. The least significant half of the
energy to be deleted must be stored in the most significant half of
the index register, and the most significant half of the energy must
be stored in the least significant half of the index register. By switch­
ing the two eight bit values around in this manner, the STX instruc­
tion will store the energy in the desired order in memory (the least
significant half in the lower address of the pair of memory locations).
The amount of energy deleted is first output to the display device to
inform the operator of the loss. The shield energy level is checked,
and if sufficient, the energy is removed from the shield. If the level
is not high enough to absorb the loss, the remaining shield energy is
transferred to the main supply, and the loss is taken from the main
storage bank. If at this time the main supply is not enough, the ship
is out of energy, and the game is over. Otherwise, since the shield
energy is zero, the warning message is output and an additional 25
percent of the energy loss is depleted from the main supply as a
penalty. The listing of ELOS and its supporting subroutines is shown
next.

3 -19

ELOS STX STORE3 Save energy value
LDX #STORE3 Set pointer to value to be converted
LDAB :#1:$02 Double precision conversion
JSR BINDEC Convert to BCD for message
LDX #$0313 Set pntr to least signif digit of energy
LDAB -#$04 Set digit counter
JSRDIGPRT Put digit in message
LDX #$02FF Set pointer to energy loss message
BSR LR6 Print energy loss message
LOX STORE3 Restore value for routines
STX STORE1 To follow

ELS1 BSR CKSD Is shield energy sufficient?
BCCFMSD Yes, delete from shields and return

SD01 LDXDVSE Move shield energy to main storage
STX STORE1
BSR FMSD Remove energy from shields
BSRTOMN Move shield energy to main storage
LDXSTORE3 Fetch energy to be deleted
STX STORE1 Store for routines

SDO BSRCKMN Energy enough?
BCSEOUT1 No, ship out of energy
BSR FMMN Yes, take from main
LDX #$0315 Print WARNING!
BSR LR6 DANGER - SHIELD ENERGY 000
LDAB :/1=$02 Divide energy loss by 2 twice
BSRDVD To divide by 4
BSR CKMN Enough main energy for penalty?
BCSEOUT1 No, out of energy message
BRAFMMN Yes, take penalty and return

CKSD LDXPDVSE Check shield energy level
BRACK1 Against requested level

CKMN LDXPDVME Check main energy level

CK1 LDAA $01,X Fetch most significant half
CMPA STORE1+$1 Is most significant half =O?
BNE ELOS1 No, return with flags set up

CK2 LDAAX If > =, return with C flag set
CMPASTORE1 If less than, C flag reset
RTS Return

FMSD LDXPDVSE Set pointer to shield energy
BRA FM1 Subtract energy from shields

FMMN LDXPDVME Set poin ter to main storage

FM1 LOAAX Fetch least significant half of energy
SUBA STORE1 Subtract least significant half of loss

3·20

STAAX Return to storage
LDAA $Ol,X Fetch most significant half of energy
SBCA STORE1 +$1 Subtract most significant half of loss
STAA $Ol,X Return to storage
RTS

TOSD LDXPDVSE Set pointer to shield energy
BRAT01 Add energy to shields

TOMN LDXPDVME Set pointer to main energy
T01 LDAAX Fetch least significant half of energy

ADDASTORE1 Add least significant half of loss
STAAX Return to storage
LDAA $Ol,X Fetch most significant half of energy
ADCA STORE1 +$1 Add most significant half of loss
STAA $Ol,X Return to storage
RTS

DVD TSTB Divide the double
ROR STORE1 +$1 Precision value
ROR STORE1 By two the number
DECB Of times indicated in B
BNEDVD

EWS1 RTS Return
EOUT1 JMPEOUT

The removal of energy from the main supply for the execution of
commands, firing phasors and torpedoes, and moving through the
galaxy is provided by the ELOM subroutine. The amount of energy
to be removed is stored in the index register (as described in the
ELOS subroutine) when the ELOM subroutine is called. If the main
energy bank contains enough energy, the energy is deleted, and the
subroutine ret~ns to the calling program. If there is not enough
energy, the shield energy is transferred to the main storage bank in
an effort to provide for the loss. If this does not provide sufficient
energy, the game is over. However, if the transfer does produce the
energy needed in the main supply, the energy will be removed; and
since the shield energy has been reduced to zero, an additional 25
percent of the energy loss will be deleted from the main supply as a
penalty. The listing for ELOM is presented next.

ELOM BSR CKMN
BCCFMMN
LDX STORE1
STX STORE3
JMP SD01

Enough energy in main?
Yes, take from main and return
No, save value of energy loss

Transfer shield energy and try again

3 - 21

The amount of energy transferred to or from the shields and the
energy to be fired by the phasor is entered by the operator. The EIN
subroutine is called to input these energy values. The first entry is
checked to determine whether it is a minus sign, used in the shield
entry. Location 55 on page 00 will be all zeros if the value is to be
positive, and non-zero for a negative entry. Each digit entered is
checked for validity, and then the ASCII code is masked off, resul­
ting in the BCD digits being stored in locations 54 through 51. The
units digit is stored in location 51. Four digits must be entered by
the operator when this routine is called. If the input is found to be
invalid, the routine returns with the N flag set to '1.' If the input is
valid, the N flag is reset upon returning to the calling program. The
listing for this routine is presented next.

EIN LDX PDG5TH
CLRX
JSR INPUT
CMPA #$AD
BNE EN2
STAAX

ENl JSR INPUT
EN2 DEX

STAAX
JSRFNUM
EMI EINl
LDAAX
ANDA #$OF
STAAX
CPXPDGlST
BNE ENl

EINl RTS

Set pointer to start of digit store
Clear sign indicator
Get first character
Negative sign?
No, check digit
Make negative indicator not ~O
Get next character
Advance storage pointer
Store digit
Valid digit?
No, return with N flag set
Yes, fetch digit
Mask off ASCII bits
Save BCD value
End of input?
No, fetch next digit
Yes, return

When the space ship destroys an alien ship or space station, the
result is the elimination of the alien ship or space station from the
galaxy. The subroutine DLET is called to perform this function.
First, the sector location of the object is cleared by storing a CO in
the data table at the location indicated by the index register. From
this location, the identity of the object to be deleted is ascertained.
A pointer is then formed indicating the location of the quadrant in
the galaxy content table from which the object is to be removed. If
the object was a space station, it is removed from the galaxy and the
number of space stations is decremented. If this value goes to zero, a
warning message is output to inform the operator that the last space

3 - 22

station has been destroyed. If an alien ship is destroyed, it is removed
from the galaxy and its count is decremented. When the number of
alien ships reaches zero, the game is over a.o1d the operator has suc­
cessfully completed the mission. The listing of DLET is shown next.

DLET LDAA #$CO
SfAAX
SfXPNTR2
LDAA CQLSS
ADDA #$CO
JSR ATINX1
STXPNTR3
LDXPNTR2
JSR COMPAR
BNE DLAS
LDX PNTR3
LDAAX
ANDA #$37
SfAAX
SfAACQC
DECNSS
BNE DLET1
LDX 41= $04DB
JMPMSG

DLAS LDX PNTR3
LDAAX
SUBA #$10
SfAAX
STAACQC
DEC NAS
BNE DLET1
LDX #$03D4
JMPDONE

DLET1 RTS

COMPAR Sf X PNTR1
LDAA PNTR1 +$1
CMPA #$3E
RTS

Load with clear character
Clear object from table
Save table location
Get quadrant location
Form galaxy table pointer
Place pointer in index
Set table pointer
Fetch table location
Space station hit?
No, delete alien ship
Fetch galaxy pointer
Get quadrant contents
Delete space station
Restore quadrant in galaxy
Place new contents
Decrement number of space stations
If more left, return
If number of space stations =0,
Print warning message & return

Fetch galaxy pointer
Get quadrant contents
Delete 1 alien ship from quadrant
Restore to galaxy
Save new contents
Decrement number of alien ships
More aliens, return
All aliens destroyed!
Print CONGRATULATIONS,
Start new game

Store index value
Fetch low portion of the address
Set flags for address relative to SLSS
Return with results

The final group of subroutines to be presented deals with the
movement of the space ship through the galaxy, and the tracking of
the torpedo within the quadrant. Moving an object through the
galaxy is performed with the use of a table referred to as the
COURSE TABLE. The course table, presented next, is located at the

3 - 23

beginning of page 00, and contains 16 pairs of row and column dis­
placement values. There is one pair of displacement values for each
possible direction of movement. The first value of each pair is the
column displacement; the second value is the row displacement.
The entries in the course table are made up of the binary values 2, 1,
0, -1, and -2. A displacement of 1 advances the object one half of a
sector for each sector move made. So, for example, if the course was
chosen as 8.5, the displacement value for the column is two, and for
the row is one. This means that for every column moved to the right,
the object would move one half of a row down. A move is made by
the program by separating the row and column location of the object
to be moved, rotating each to the left once, and using the adjusted
values to calculate the move. Then, for each sector move made, the
row and column displacement is added to the adjusted row and
column location. When the move is completed, the adjusted values
are rotated to the right once, and then combined to give a new sector
location to the object. By using this method it is possible for the
direction of travel to be broken down to every 22lh degrees.

DISPLACEMENT
VALUES

02
00
02
FF
02
FE
01
FE
00
FE
FF
FE
FE
FE
FE
FF
FE
00
FE
01

3 - 24

COURSE
SELECTED

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

FE 6.0
02
FF 6.5
02
00 7.0
02
01 7.5
02
02 8.0
02
02 8.5
01

The subroutine DRCT is called to input the course direction from
the operator through the input device. The two digits defining the
move are checked for validity when entered, and then used to form a
pointer to the course table. If the input is valid, the routine returns
with the Z flag reset, and the pointer stored in location 20 on page
00. If invalid, the Z flag is set before returning. The ACTV subrou­
tine is then called to fetch the displacement values from the course
table, and store the column displacement in location 2D and the row
displacement in location 2C. It then sets up the adjusted row and
column values, and stores them in locations 2E and 2F respectively.

The subroutine labeled TRK is called to make the individual sec­
tor moves. First, the quadrant crossing flag is cleared. The column
displacement is then added to the adjusted column location, and a
quadrant crossing to the left or right is checked. If the crossing did
occur, the crossing flag is set, and the adjusted column is corrected to
indicate the new column value. The crossing is then checked for a
move out of the galaxy, which would be indicated by the TRK sub­
routine returning with the Z flag set. If the move is not out of the
galaxy, the new quadrant location is stored at location 4C on page
00. The row displacement is then added to the adjusted row location,
and a quadrant crossing up and down is checked. If a quadrant is
crossed, the crossing flag is set and a move out of the galaxy is
checked. If the crossing is out of the galaxy, the routine returns with
the Z flag set. Otherwise, the new quadrant location is stored at loca­
tion 4C, and the routine returns with the Z flag reset. The final sub­
routine of this group is called RWCM, and is called to restore the ad­
justed row and column locations to the single byte used to define the

3 - 25

final location of the object moved. The listings for these subroutines
are presented next.

DRCT JSRINPUT Input first course number
CMPA :#:$B1 Is input less than 1?
BCSZRET Yes, illegal inpu t
CMPA #$B9 Is input greater than 8?
BCC ZRI!.'T Yes, illegal input
ANDA #$OF No, mask off ASCII bits
ASLA If good times 2
TAB And save in temporary storage
LDAA :#:$AE Print decimal point
JSR PRINT
JSR INPUT Input second course number
CMPA #$BO Is digit zero?
BEQ CR1 Yes, continue process
CMPA #$B5 No, is digit =5?
BNE ZRET No, return with Z flag set

CR1 ANDA #$01 Mask off all but first bit
ABA Add first number input
ASLA And form pointer to course table
SUBA #$04
STAAPNTR1+$1 Save pointer in temporary storage
CLRA
STAAPNTR1 Clear least significant byte of pointer
INCA Reset Z flag
RTS Before returning

ZRET CLRA Set Z flag
RTS And return

ACT V STS PNTR2 Save stack pointer temporarily
LDS PSTR51 Set stack to storage area
LDAA SLOSS Get present location
TAB Save temporarily
ANDB =11= $07 Mask out column
ASLB Multiply by 2
PSHB Store adjusted. column
ANDA #$38 Mask out row
LSRA Set up times 2 value
LSRA
PSHA Save adjusted row

LDXPNTR1 Get displacement table pointer
LDAAX Get column movement
PSHA Store column displacement
LDAA $Ol,X Get row movement
PSHA Store row displacement

3 - 26

LDSPNTR2 Restore stack pointer
RTS

TRK CLRCF Clear quadrant crossing flag
LDAA STORE5+$1 Get adjusted column
ADDA STORE4+$1 Add column move
STAA STORE5+$1 Save temporarily current column
BPLNOBK If no left crossing, branch
ANDA #$OF Left crossing correction
ST AA STORE5+$1 And save new adjusted column
INCCF Indicate left crossing

LDAACQLSS And decrement current column
ANDA #$07 Is CQC =O?
BEQ TRK1 Yes, return with Z set
DEC CQLSS No, decrement CQC
BRARMV Do row move

NOBK CMPA #$10 Quadrant crossing right
BCSRMV No, do row move
ANDA :#=$OF Yes, correct and
STAA STORE5+$1 Save new adjusted column
INCCF Indicate crossing by making

Crossing flag non-zero
LDAA CQLSS Fetch current quadrant location
ANDA #$07 Separate column entry
INCA Increment column entry
CMPA -#$08 Move out of galaxy
BEQ TRK1 Yes, return with flags set
INC CQLSS No, increment quadrant column

RMV LDAA STORE5 Get adjusted row value
ADDASTORE4 Add movement
STAA STORE5 Save new adjusted row
BPLNOUP If not up, jump
ANDA =#=$OF Move up one quadrant, correct
STAA STORE 5 And save new adjusted value
INCCF Make crossing flag non-zero
LDAA CQLSS Decrement quadrant row
TAB Save temporarily
ANDA -#$38 Is quadrant row =O?
BEQ TRK1 Yes, return with Z flag set
SUBB *$08 No, decrement current quadrant row
STABCQLSS Save new current quadrant
BRACKX Then perform crossing logic

NOUP CMPA #$10 Quadrant crossing down?
BCSCKX No, check for crossing flag
ANDA #$OF Yes, correct and
STAA STORE5 Save new adjusted row
INCCF Indicate crossing

3 - 27

CKX

TRKl

RWCM

LDAACQLSS
TAB
ANDA #$38
ADDA -#$08
CMPA =#1:$40
BEQ TRKl
ADDB *$08
STAB CQLSS

BNETRKl
LDAA#$Ol
RTS

LDAA STORE5+$1
LSRA
ANDA =#=$07
LDAB STORE5
ASLB
ASLB
ANDB :#<$38
ABA
RTS

Then increment quadrant row
Save temporarily
Separate row entry
Increment row value
Out of galaxy?
Yes, return with Z flag set
No, increment row
Save new current quadrant

Return with Z flag reset
If not, reset it

Fetch adjusted column
Adjust position
Form column value
Fetch row
Position row value

Form row value
Form row and column byte
Return

3 - 28

MAJOR ROUTINES OF THE GALAXY PROGRAM

The main portion of the Galaxy program consists of nine major
functional routines. The first of these routines provides the initial
galaxy setup. The contents of each quadrant are randomly selected
from the galaxy setup table which consists of many possible quad­
rant content arrangements. The selected quadrant arrangements are
then stored in the galaxy content table. This random selection pro­
vides a different game for the operator each time GALAXY is
played.

This routine, labeled GALAXY, is the starting point of the entire
program. It begins by posing the question, "DO YOU WANT TO GO
ON A SPACE VOYAGE?" The INPUT routine is then called to input
the response from the operator. If the response is "N," the program
outputs the message "CHICKEN," and jumps to an address set up by
the programmer. To insert this jump, the user replaces the three NOP
instructions with a jump instruction. For any response other than N,
the program will store the code received in the second byte of the
random number and proceed to form the galaxy contents to be used
for this game.

With the use of the random number generator, various locations
in the galaxy setup table are selected and stored in the galaxy con­
tent table. When the galaxy content table is filled, the number of
alien ships and space stations in the newly formed galaxy is calcu­
lated. If the count is not within the limits desired, the contents of
the galaxy are revised until the proper limits are met. The number of
alien ships must be between 10 and 31, and the number of space
stations must be between 2 and 6. These limits may be revised by the
reader by simply changing the binary values in the compare instruc­
tions which set the limits. Once the galaxy is completed, the values
indicating the number of space stations and alien ships are stored in
the data table. The number of stardates is then set to a value of five
greater than the number of alien ships, and is also stored in the data
table. The message stating the mission assigned for this game is then
prepared by storing the ASCII code for the number of alien ships,
stardates, and space stations in the body of the message, and calling
the MSG subroutine to output it. This routine finishes by selecting
the starting quadrant, loading the initial energy and torpedoes for the
space ship, setting up the locations of the quadrant contents, and

4-1

setting the start location of the space ship within the quadrant. The
flow chart and program listing of this routine are presented next.

GALAXY LDS :it$OEFF Set stack pointer to stack area
JMP START Jump to start of Galaxy program

START LDX :it$OlOO Set pointer to initial message
JSRMSG Print introduction

JSRRN Increment random number
JSR INPUT Input character
STAA RNM+$l Store input to randomize
CMPA #$CE Character = N? Yes, stop game
BNE OVER No, set up galaxy

LDX #$04E2 Print "CHICKEN"
JSR MSG
NOP User defined
NOP End of program
NOP

OVER LDAB -#$CO Set pointer to galaxy storage
STAB STOREl Save in temporary storage

GLXSET JSRRN Fetch random number
ANDA #$7F Form pointer to
LDAB :#$OF Galaxy table from
STAB PNTRl Random number
JSRATINX Set index to galaxy table
LDABX Get galaxy entry
LDAA STOREl
JSRATINXl Set index to galaxy content table
STAB X Store quadrant contents
INC STOREl Galaxy contents complete?
BNEGLXSET No, fetch more sectors

GLXCK CLR NSS Clear space station count
CLRNAS Clear alien ship count
LDX #$OOCO Pointer to galaxy content table

GLXCKl LDAAX Fetch quadrant contents
TAB Save in 'B' accumulator
ANDA #$08 Mask space station
ADDANSS Add to space station total
STAA NSS Save space station total
ANDB #$30 Mask alien ship
LSRB Position
LSRB
AD DB NAS Add to alien ship total

4-2

STABNAS Save alien ship total
INX Increment galaxy content pointer
CPX #$0100 End of table?
BNEGLXCK1 No, continue adding
LDAANSS Fetch space station total
LSRA Position total to right
LSRA
LSRA
STAA NSS Store total
CMPA =#$07 Too many space stations?
BPL SSPLS Yes, delete 1
CMPA #$02 Too few?
BPL CAS No, O.K., check alien ships

SSMNS LDAB #$08 Yes, form mask to
STAB STORE1 Add one space station
BRAMNS

SSPLS LDAB #$F7 Form and store mask to
STAB STORE1 Delete one space station
BRAPLS

ASPLS LDAB #$CF Form mask to delete
STAB STORE1 One alien ship

PLS JSRRN Fetch random number
ORAA #$CO Form galaxy table pointer
JSR ATINX1 Place pointer in index
LDAA STORE1 Fetch mask
ANDAX Delete from galaxy

PLS1 STAAX Store new quadrant contents
JMPGLXCK Check galaxy again

ASMNS LDAB #$10 Form mask to add
STAB STORE1 One alien ship

MNS JSRRN Fetch random number
ORAA #$CO Form galaxy table pointer
JSR ATINX1 Place pointer in index
LDAA STORE1 Fetch mask
ORAAX Add one alien ship to quadrant
BRA PLS1 Check galaxy again

CAS LDAANAS Fetch alien ship total
LSRA Position
LSRA
STAA NAS Save total
CMPA #$20 Too many alien ships?
BPL ASPLS Yes, delete one alien ship
CMPA #$OA Too few?
BMIASMNS Yes, add one alien ship

4-3

ADD 1

SETUP
GALAXY CONTENTS

SPACE STATION ~-.....;...<
DELETE

'>--~ 1 SPACE STATION

ADD 1
ALIEN SHIP IF---'-<

DELETE
>---~ 1 ALIEN SHIP

SA VE COUNT OF
ALIEN SHIPS,

SPACE STATIONS

4-4

LDAA ~$05
ADDANAS
srAANSR
LDX =#NSR
LDAB :##-$01
JSRBINDEC
LDX #$014E
LDAB #$02
JSR DIGPRT
LDX =#NAS
LDAB :#F$01
JSRBINDEC
LDX =#$013C
LDAB :#F$02
JSR DIGPRT
LDAANSS
ORAA :#$BO
STAA $015F
LDX #$0128
JSRMSG
JSRRN
AND A #$3F
srAACQLSS
JSR QCNT
JSRLOAD
JSRNWQD
LDXPSLOSS
LDAB #$01
JSR LOC'3ET

Set up five more stardates
Than alien ships
Save number of stardates
Convert binary value
Set precision counter
Convert stardate value
Pointer to stardate count
Set precision counter
Put digits in starting message
Pointer to alien ship value
Set precision counter
Convert alien ship value
Pointer to alien ship count
Set precision counter
Put digits in starting message
Get number of space stations
Form ASCII digit
Store in starting message
Pointer to start of message
Print starting message
Fetch starting quadrant
Mask offMSB's
Save current quadrant location
Fetch current quadrant contents
Set initial conditions
Set quadrant contents location
Pointer to sector location storage
Set precision counter
Set initial space ship location

The next routine, which immediately follows the galaxy setup
routine, is the short range scan. The location of each of the objects
contained in the current quadrant is displayed as illustrated in the
sample short range scan in Chapter One. By the use of the ROWSET,
BINDEC, DIGPRT, and MSG subroutines, each line of the scan is
prepared and output to the display device. This routine is entered
following the galaxy setup to display the initial quadrant; then after
each move by the space ship either within the quadrant or when a
new quadrant is entered, and in response to a command to display
a short range scan. The flow chart and listing for this routine, which
begins at the label SRSCN, are presented next.

SRSCN LDX *$0170
JSR MSG
LDAB -#$01
JSRROWSET
LDAA :#F$32
SUBANSR
srAA srORE1

Set pointer for short range scan
Print initial row
Set row number one
Set up row for printout

Calculate stardate number
Save temporarily

4-5

LDXPSTR1 Set pointer to binary value
LDAB 41=$01 Set precision counter
JSRBINDEC Convert to current stardate
LDX 4F$OIB6 Set pointer to stardate message
LDAB #$02 Set counter to number of digits
JSRDIGPRT Put digits in stardate message
LDX 4f:$01A8 Set pointer to message
BSR SRSCN1 Print stardate message

LDAB 4#<$02 Set row number two
JSR ROWSET Set up row for printout
LDAACQC Fetch current quadrant contents
LDX #$01C3 Set pointer to condition message
ANDA -#$30 Alien ship in quadrant?
BNE RED Yes, condition red

LDAA #$C7 No, condition green
STAAX Fill in 'GREEN' in
LDAA 4F$D2 Condition message
STAA $Ol,X
LDAA #$C5
STAA $02,X
LDAA #$C5
STAA $03,X
LDAA #$CE
STAA $04,X
BRA CND Output condition message

SRSCN1 JMPMSG

RED LDAA #$D2 Condition red
STAAX Fill in 'RED' in
LDAA #$C5 Condition message
STAA $Ol,X
LDAA =iI=$C4
STAA $02,X
CLR $03,X

CND LDX =iI=$OIB8 Set pointer to condition message
BSR SRSCN1 Print condition message

LDAB #$03 Set row number three
JSR ROWSET Set up for printout
JSRQUAD Print current quadrant

LDAB #$04 Set row number four
JSRROWSET Set up for printout
LDX =iI=$01E3 Set up sector message
STXPNTR1 Pointer in storage
LDXPSLOSS Pointer to current sector
JSRTWO Put two digits. in message
LDX #$0108 Set pointer to sector message
BSR SRSCN1 Print sector message

LDAB *$05 Set row number five
JSRROWSET Set up row for printout
LDXPDVME Set pointer to main energy

4-6

[iET UP 1st ROW CONTENTS & PRINT

PRINT STAR DATE MESSAGE

PRINT CONDITION l\1ESSAGE

PRINT QUADRANT MESSAGE

PRINT SECTOR MESSAGE

PRINT ENERGY MESSAGE

PRINT TORPEDO MESSAGE

SET UP 7th ROW CONTENTS & PRINT

PRINT SHIELD ENERGY MESSAGE

SET UP 8th ROW CONTENTS & PRINT]

PRINT BOTTOM BORDER

JUMP TO COMMAND INPUT

4-7

LDAB *$02
JSRBINDEC
LDX :iF$01F5
LDAB '#0$04
JSRDIGPRT
LDX *$01E7
BSR SRSCN1

LDAB *$06
JSR ROWSET
LDX #NTR
LDAB *$01
JSRBINDEC
LDX =1#="$0203
LDAB 41=$02
JSRDIGPRT
LDX -#$01F7
JSR SRSCN1

LDAB =1#="$07
JSR ROWSET
LDXPDVSE
LDAB *$02
JSRBINDEC
LDX '#$0213
LDAB *$04
JSRDIGPRT
LDX #$0205
JSRMSG

LDAB '#$08
JSRROWSET
LDX #$0170
JSRMSG

Set precision counter
Convert to decimal
Message pointer
Counter for four digits
Put digits in message
Set pointer to energy message
Print energy message

Set row number six
Set up for printout
Pointer to torpedo count
Precision =1
Convert to decimal
Set pointer to torpedo message
Counter to number of digits
Put number of torpedoes in message
Print torpedo message

Set row number seven
Set up row for printout
Set pointer to shield energy
And set precision for
Binary to decimal conversion
Set pointer to shield energy message
Set digit count
Put digits in memory
Set pointer to shield message
Print shield message

Set row number eight
Set up row for printout
Set pointer to final row
Print final row

The commands, input by the operator to direct the operation of
the space ship, are controlled by the COMMAND INPUT routine,
labeled CMND. This routine (which immediately follows the short
range scan) begins by deleting ten units of energy from the main
storage bank to simulate the loss of energy resulting from the opera­
tion of the ship's control panel. The second byte of the random num­
ber storage is then decremented to increase the random number
generator's overall randomness. The command request message is
then output to the display device, followed by a call to the input
routine to receive the command from the input device. If the charac­
ter input matches one of the ASCII codes (indicating a valid com­
mand), the proper routine is entered to perform the command. If the
character is not a valid command entry, the program simply requests
the command input again. The flow chart and listing for the com­
mand input routine are presented next.

4-8

DECREMENT RANDOM NUMBER
GENERATOR CONSTANT

NO

NO YES

NO YES

NO YES

NO YES

4-9

JUMP TO
SHIP MOVEMENT

ROUTINE

JUMP TO
SHORT RANGE SCAN

ROUTINE

JUMP TO
LONG RANGE SCAN

ROUTINE

JUMP TO
GALAXY DISPLAY

ROUTINE

JUMP TO
SHIELD ENERGY

ROUTINE

JUMP TO
PHASOR
ROUTINE

JUMP TO
TORPEDO
ROUTINE

CMND LDX *$OAOO Delete ten units of energy
STX STORE1 For each command
JSRELOM
DEC RNM+$l Randomize random number

CMD LDX #$0215 Set pointer to command message
JSRMSG Request command input
JSR INPUT Input command

CMPA #$BO Ship movement?
BNE NCRSE No, try next
JMP CRSE Yes, input course

NCRSE CMPA #$B1 Short range scan?
BNE NSRSCN No, try next
JMP SRSCN Yes, display quadrant

NSRSCN CMPA #$B2 Long range scan?
BNE NLRSCN No, try next
JMP LRSCN Yes, print long range scan

NLRSCN CMPA #$B3 Galaxy printout?
BNE NGXPRT No, try next
JMPGXPRT Yes, print galaxy

NGXPRT CMPA #$B4 Shield energy?
BNE NSHEN No, try next
JMP SHEN Yes, adjust shields

NSHEN CMPA #$B5 Phasor control?
BNE NPHSR No, try next
JMPPHSR Yes, fire phasors

NPHSR CMPA #-$B6 Torpedo shot?
BNE CMD No, illegal command, try again
JMPTRPD Yes, shoot torpedo

The long range scan routine outputs the contents of the current
quadrant and the eight quadrants which immediately surround it.
The number of alien ships, space stations, and stars in each of these
quadrants is displayed as described in the first chapter. A message
is output first indicating the current quadrant location of the space
ship. The contents of the three quadrants in the row above the
current quadrant are then output by calling the LRR subroutine.
If this top row is outside the galaxy, the contents will be output as
all zeros by use of the RWC routine. The row containing the current
quadrant is then output, followed by the row below the current
quadrant. If this bottom row is outside the galaxy, its contents will
be displayed as all zeros. A dividing line of dashes is output between
each row. At the completion, the routine returns to input a new
command. The long range scan routine begins at the label LRSCN.
The flow chart and listing for this routine are presented next.

4 - 10

PRINT LONG RANGE HEADING
INDICATING CENTER

QUADRANT LOCATION

SET BOTTOM ROW
CONTENTS & PRINT

4 - 11

PRINT
TOP ROW

AS ALL ZEROS

PRINT
BOTTOM ROW
AS ALL ZEROS

LRSCN LDX =#= $024D Set pointer to long range message
JSRMSG Print long range scan
JSRQUAD Print quadrant location
BSR LRSCN1 Print row of dashes
LDAACQLSS Fetch current quadrant
TAB Save temporarily
ANDB :#$38 Current quadrant in row no. I?
BEQRWC1 Yes, top row clear
SUBA #$08 Indicate row -1
JSR LRR Set up and print top row

LR1 BSR LRSCN1 Print separating row
LDAA CQLSS Fetch current quadrant
JSR LRR Set up and print middle row

BSR LRSCN1 Print separating row
LDAA CQLSS Fetch current quadrant
CMPA #$38 Current quadrant in row no. 8?
BCC RWC2 Yes, bottom row clear
ADDA *$08 No, set quadrant row +1
JSR LRR Set and print bottom row

LR2 BSR LRSCN1 Print bottom border
JMPCMND Input next command

LRSCN1 JMP NTN

RWC1 BSR RWC Print clear row
JMP LR1 Continue long range scan

RWC2 BSR RWC Print clear row
JMP LR2 Finish long range scan

RWC LDX #$04C9 Set pointer to left quadrant
CLRA Set zero entry
JSR QDSET Set quadrant contents
LDX #-$04CF Set pointer to middle quadrant
CLRA Set zero entry
JSR QDSET Set quadrant contents
LDX #$04D5 Set pointer to right quadrant
CLRA Set zero entry
JSRQDSET Set quadrant contents
JMP LRP Print long range row

The galaxy display routine produces an output of the entire galaxy
contents to the display device in a format similar to that of the long
range scan. The display is used to provide the operator with a map
from which a course may be charted for the mission. The contents of
a complete row are set up in the galaxy printout message on page 00
by calling the QDSET subroutine, and then the row is output to the

4 - 12

display device. A dividing line of dashes is output between each row.
When the output is finished, the routine returns to the command in­
put routine. The galaxy display routine flow chart and listing are
presented next.

GXPRT LDX #$0422 Print GALAXY DISPLAY
JSRMSG
LDAB $31
JSR NT1 Print border

LDX #$OOCO Set pointer to galaxy
STXPNTR1 Store temporarily

GL1 LDX =#:$0084 Set up message pointer
STXPNTR2 Store temporarily

GL2 LDX PNTR1 Fetch galaxy pointer
CPX #$0100 End of printout?
BEQ GL3 Yes, input next command
LDAAX Get quadrant contents
INX Advance pointer
STXPNTR1 Restore to memory
LDXPNTR2 Set up message pointer
JSRQDSET Set quadrant contents in MSG
LDAA #$06
ADDA PNTR2+$1 Advance message pointer
STAA PNTR2+$1 Restore to memory
CMPA #$B4 This end of line?
BNE GL2 No, set next quadrant

LDX #$0080 Print current line of galaxy
JSRMSG
LDAB #$31
JSR NT1 Print border
BRAGL1 Set up next line

GL3 JMPCMND End, return to command inpu t

The shield routine transfers energy between the main energy
supply and the protective shields as designated by the operator. The
routine begins by requesting the operator to enter the amount of
energy to be transferred. The ErN routine is called to input the
energy from the input device. The input is then converted to its
binary value and the sign of the input is checked. If a minus sign was

4 - 13

PRINT GALAXY HEADING

SET UP & PRINT 8 QUADRANTS
OF GALAXY

entered preceeding the energy input, the energy is transferred from
the shield energy to the main energy storage. If only the four digits
are entered, the transfer of energy goes from the main supply to the
shields by jumping to the routine labeled POS. In either case, the
supply from which the energy is to be taken is checked to determine
whether there is enough energy for the transfer. If there is not
enough, a message is output to inform the operator, and the routine
returns to the command input routine. If there is sufficient energy,
the transfer will be completed and the program will return to the
command input routine. This routine begins at the label SHEN. The
flow chart and listing are presented next.

SHEN LDX -#$0330
JSRMSG
JSR EIN
BMISHEN

Print SHIELD ENERGY
TRANSFER =
Input energy amount
Invalid input, try again

4 -14

TRANSFER
FROM SHIELD

TO MAIN

JSRDCBN

PRINT
"NOT ENOUGH

ENERGY"

JUMP TO
COMMAND INPUT

Convert to binary

TRANSFER
FROM MAIN
TO SHIELD

LDX STORE2
STX STOREI
LDAADGT5TH
BEQ POS

Transfer binary amount for
Routines to follow
Test if have '-' sign
No, transfer main to shields
Check shield energy JSR CKSD

BCSNE
JSR FMSD
JSRTOMN
BRA SHENI

POS JSR CKMN
BCSNE

Not enough, print message
Subtract from shields
Add to main
Input new command

Check main energy
Not enough, display message

4 - 15

JSRFMMN
JSRTOSD
BRA SHENI

NE LDX =#$034C
JSRMSG

SHENI JMP CMND

Subtract from main
Add to shields
Input new command

Print NOT ENOUGH
ENERGY
Input new command

The movement routine is called when it is desired to move the
space ship within the galaxy. The course direction is input by calling
the nRCT subroutine, which returns with the pointer to the course
table stored in the temporary pointer storage labeled PNTRl'. The
distance, or warp factor, is then entered, and the binary count of the
number of sectors to be traversed is stored in the counter storage
labeled CNTR. The ACTV subroutine is called to set up the adjusted
row and column values used by the TRK subroutine in advancing the
space ship. The crossing indicator is cleared before the routine begins
the actual movement of the space ship. The crossing indicator is used
at the end of the move to indicate whether one or more quadrant
borders have been crossed.

Movement of the space ship begins at the label MOV which first
calls TRK to move the space ship one sector. If the return from TRK
indicates the space ship is outside the known galaxy, the LOST sub­
routine is called, which ends the current game. Otherwise, a quad­
rant crossing is checked by reading the crossing flag. If a crossing did
not occur, the program checks for a possible collision. However, if
the space ship did cross a quadrant border, the crossing indicator is
set, 25 units of energy are deleted from the main supply, and the
new quadrant is set up.

The routine then checks for a collision between the space ship and
the other objects in the quadrant. If a collision occurs within the
initial quadrant, the result will be one of the following. For a
collision with a star, the game will end by jumping to the WPOUT
subroutine. A collision with a space station results in the elimina­
tion of the space station and the loss of 600 units of energy from the
ship's shields. Finally, a collision with an alien ship results in its
elimination, and a loss of 1500 units of energy from the space ship's
shields.

Mter a collision with a space station or alien ship, or if there was

4 - 16

no collision, the move is continued by decrementing the warp factor
and, if not zero, returning to MOV to move the space ship one more
sector. When the warp factor reaches zero, the crossing indicator is
checked, and if set, the stardate counter is decremented. When the
stardate counter goes to zero, the operator has run out of time and
the game ends by jumping to the TIME subroutine.

The location of the space ship is then checked against the location
of the other objects in the quadrant. If the space ship is in the same
sector as another object in the quadrant, the other object is moved.
This coincidence may occur when the space ship moves into a new
quadrant, since a collision outside the original quadrant is ignored in
the collision routine.

The final operation of this routine is to check for a docking with a
space station. This can only occur when the space ship completes its
move by residing in a sector on either side of the space station. The
space ship is not docked when it is in the sector above or below the
space station. If the space ship is docked, its energy banks and tor­
pedo tubes are refilled. The flow chart and listing for the movement
routine are now presented.

CRSE LDX :#:$0220
JSR MSG
JSRDRCI'
BEQ CRSE

WRP LDX #$0233
JSRMSG
JSR INPUT
CMPA #$BO
BCSWRP
CMPA "F$B8
BCCWRP
ANDA #$07
ASLA
ASLA
ASLA
TAB
LDAA :/I=$AE
JSR PRINT
JSR INPUT
CMPA 4F$BO
BCSWRP
CMPA #$B8

Set pointer to course message
Request course input
Input course direction
Input error, try again

Index to WARP message
Request warp input
Input warp factor digit 1
Is digit less than O?
Yes, request input again
Is digit greater than 7?
Yes, try again
Mask off ASCII code
Position to 3rd hit

Store temporarily in B
Print decimal point

Input 2nd warp factor digit
Is digit less than O?
Yes, request input again
Is input greater than 7?

4 - 17

BCCWRP Yes, no good, try again
ANDA 4/=$07 Mask off ASCII code
ABA Add warp digit 1
BEQWRP If 0, no good, try again
STAA CNTR Store warp factor as counter
JSRACTV Fetch adjusted row and column
CLR CI Clear crossing indicator

MOV JSRTRK Track one sector
BNE MOV1 Out of galaxy? No
JMP LOST Yes,lost in space

MOV1 LDAACF No, quadrant crossed?
BEQ CLSN No, check for collision
STAA CI Make crossing indicator non-zero
LDX #$1900 Delete 25 units of energy
STX STORE1 From main supply
JSR ELOM
JSRQCNT Fetch new quadrant contents
JSRNWQD Set up new quadrant

CLSN JSR RWCM Form row and column byte
JSRMATCH Collision?
BNEMVDN No, complete move
JSRCOMPAR What was hit?
BEQ SSOUT Space ship collision!
BCCASOUT Alien ship collision!
LDAACI Star, initial quadrant?
BNEMVDN No, ignore collision
JMPWPOUT Yes, ship wiped out!

MVDN DECCNTR Decrement warp factor
BNEMOV Not zero, continue move
LDAACI Fetch crossing indicator
BEQ NOX Quadrant not crossed, continue move
DECNSR Decrement stardate counter
BNE NOX Not zero, continue
JMP TIME Ran out of time, start new game

NOX JSR RWCM Form row and column byte
STAA SLOSS Save new sector
JSRMATCH Was last move a collision?
BNE NOX1 No, check for docking
JSR CHNG Yes, change object location

NOX1 JSR DKED Check for docking
JMP SRSCN Do short range scan

SSOUT LDAA CI Test if initial quadrant
BNEMVDN No, no loss
JSR DLET Remove space station from galaxy

4 - 18

GAME
OVER

START AGAIN

PERFORM
NECESSARY

OPERATION FOR
OBJECT HIT

JUMP TO
SHORT RANGE

SCAN

CHECK
SPACE SHIP

POSITION
IN QUADRANT

YES

4 - 19

SET UP
NEW

QUADRANT

RELOAD
SPACE

SHIP

LDX ::#=$03BA
JSR MSG
LDX .:#:$5802
STX STORE1

SS01 JSRELOS
JMPMVDN

ASOUT LDAA CI
BNEMVDN
JSR DLET
LDX :#$037F
JSRMSG
LDX 4F$DC05
STX STORE1
BRA SS01

CHNG LDAB :#=$01
JMP LOCSET

DKED LDAA SLSS
BPLDKEDI
RTS

DKED1 ANDA #$38
LDAB SLOSS
ANDB #$38
CBA
BNE DKED2
LDAA SLSS
LDAB SLOSS
ADDB #$01
CBA
BEQ DKED3
SUBB #$02
CBA
BEQ DKED3

DKED2 RTS
DKED3 JMP LOAD

Indicate loss of space station

Then delete 600 units
Of energy from sheilds
Delete energy
Finish move

Test if initial quadrant
No, no loss
Yes, delete alien ship
Print alien ship destroyed message

Delete 1500 units of
Energy from space ship

Set number of objects counter
Move object and return

Is space station in quadrant?
Yes, continue
No, complete move

Mask out row
Fetch space ship location
Mask out row
Same row?
No, return
Fetch space station location
Fetch space ship location
Docked on right?

Yes, reload
No, check left docking
Docked on left?
Yes, reload
No, return
Reload space ship and return

The torpedo routine fires a torpedo in the direction specified by
the operator in an attempt to destroy an alien ship. This routine first
checks the number of torpedoes available. If there are no torpedoes
remaining, a message in output to inform the operator, and the rou­
tine returns to the command routine. If there is a torpedo available,
the torpedo count is decremented, and 250 units of energy are de­
pleted from the main storage bank. The DRCT subroutine is then
called to input the direction of fire for the torpedo. The ACTV sub­
routine then sets the adjusted row and column values for tracking
the torpedo.

4 - 20

Once the trajectory is set up, the torpedo is moved one sector at
a time, using the TRK subroutine. If the torpedo moves out of the
quadrant, it has missed its intended target and the alien ship re­
taliates by firing 200 units of phasor energy back at the space ship.
Otherwise, the sector location of the torpedo is output in the track­
ing message so that the operator can follow the torpedo's path. The
MATCH subroutine checks for a collision after each sector
moved. If there is no collision at this sector, the torpedo will be
tracked another sector by returning to the TR2 label in this routine.
If an alien ship has been hit, it is removed from the galaxy. If it is
the last alien ship, the mission is complete, and the program begins a
new game. If a space station is hit, it is eliminated and the alien ship
will retaliate as mentioned above. If a star is hit, the torpedo has
missed its mark and the alien ship will again retaliate for the
attempted attack. The program then returns to the command input
routine. The torpedo flow chart and listing are presented next.

TRPD LDAA NTR
BEQ NTPD
DECNTR
LDX #$FAOO
STX STORE1
JSRCKMN
BCC TRPD1
JMPNE

TRPD1 JSR FMMN
TR1 LDX :#:$0360

BSRTR3
JSRDRCT
BEQ TR1
JSR ACTV
LDAACQLSS
STAACNTR

TR2 JSRTRK
BEQQOUT
LDAACF
BNE QOUT
JSRRWCM
TAB
STAA STORE1
LDX #$041E
JSRT1
LDX #$0412
BSRTR3

Any torpedoes left?
No, print no torpedo message
Yes, delete one
Setup 250 units
Of energy to delete
Enough in main supply?
Yes, continue
No, report not enough energy

Delete from main
Print 'TORPEDO TRAJECTORY ='

Input direction
Input invalid, try again
Form adjusted row and column
Save current quadrant
Location in temporary storage

Move torpedo one sector
Out of galaxy? Yes, missed
Quadrant crossed?
Yes, missed
No, form row and column byte

Move to temporary storage
Set up tracking message
Print TRACKING: R,C
Form message pointer
Print message

4 - 21

REMOVE
ALIEN SHIP

FROM GALAXY

PRINT MISSION
COMPLETE
MESSAGE

4 - 22

REMOVE
'>----1 SPACE STATION

FROM GALAXY

DELETE 200
UNITS OF ENERGY

FROM SHIELDS

JUMP TO
COMMAND INPUT

LDAA STOREI Fetch row and column byte
JSRMATCH Torpedo hit anything?
BEQ HIT Yes, analyze
JMP TR2 No, continue tracking

HIT JSRCOMPAR What was hit? A star?
BCSQOUT Yes, missed alien ship
BEQ SSTA Space station? Yes, delete space station
JSRDLET No, delete alien ship
LDX #$037F Print alien ship hit message
BSRTR3
BRA CMNDI Input new command

TR3 JMPMSG Print message and return

SSTA JSR DLET Delete space station from galaxy
LDX #$03BA Print message of loss of
BSRTR3 Space station

QOUT LDAACNTR Restore current quadrant location
STAACQLSS of the space ship
JSR WASTE See if any alien ships in quadrant
LDX #:$0396
JSRMSG No, print missed message
LDX #$C800 Set up loss of 200 units of energy
JSRELOS Due to alien ship retaliating
BRA CMNDI Inpu t new command

NTPD LDX #$04B6 Print no torpedo message
JSRMSG

CMNDI JMPCMND Input new command

WASTE LDAACQC Fetch quadrant contents
ANDA #$30 Mask out alien ship count
BEQWASTEI If none, wasted shot
RTS Otherwise, return

WASTEI PULB Remove unwanted address
PULB From stack
LDX #$0479 Set pointer to wasted shot message
JSRMSG Print message
JMPCMND Input new command

The phasor routine fires a designated amount of phasor energy at
the alien ships in the quadrant. The EIN subroutine is called to input
the energy to be fired. The amount of energy entered is then deleted
from the main storage bank. The number of alien ships in the im­
mediate quadrant is then determined to calculate the amount of
energy to be fired at each. If there are no alien ships, a message is
output indicating the energy fired was wasted. The amount of phasor

4 - 23

energy to be fired at the alien ships is calculated and saved for use by
the ASPH subroutine.

The ASPH subroutine is called to fire the phasor at each of the
three possible alien ships in the quadrant. It first ascertains the
presence of the particular alien ship by looking for its row and
column location in the data table. If this location contains a CO, no
alien ship is located here and the routine simply returns. Otherwise,
this row and column location is output to inform the operator which
alien ship is about to be attacked. The distance between the space
ship and the alien ship, as defined in Chapter One, is then calculated
and the distance factor is used to det«!rmine how much of the phasor
energy actually reaches the alien ship. This energy is subtracted from
the alien ship's shield energy, and if the result is zero or less, the alien
ship is destroyed. A message is output to inform the operator of its
destruction. If the alien ship is not destroyed, the new energy level of
the alien ship's shields is output and, in retaliation, the alien ship
fires a phasor equal to one quarter of its shield energy at the space
ship. When the ASPH subroutine has completed its operation, it re­
turns to the phasor routine. After all alien ships in the quadrant have
been fired upon, the phasor routine returns to the command input
routine. The phasor routine flow chart and listing is now presented.

PHSR LDX =# $0433
BSRTR3
JSREIN
BMIPHSR
JSRDCBN
LDX STORE2
STX STOREI
JSR ELOM
JSR WASTE

PHSI JSR ROTR4
SUBA #$01
BEQ PHI
TAB
JSR DVD

PHI LDX STOREI
srx STORE4
LDX PVASEI
STX PNTR3
LDXPSLASI
JSR ASPH
LDX PVASE2

Print 'PHASOR ENERGY TO FIRE='

Input energy amount
Input error? Try again
Convert decimal to binary
Move binary energy value to proper
Storage for ELOM routine
Delete energy from main supply
Check for presence of alien ships
Position alien ship number
1 alien ship, full energy
2 alien ships, half energy
3 alien ships, 1,4 energy
Divide energy accordingly

Fetch energy amount
Save energy amount
Fetch pointer to alien ship no. 1 energy
Save pointer for ASPH routine
Pointer to alien ship no. 1 position
Fire phasor at alien ship no. 1
Fetch pointer to alien ship no. 2 energy

4 - 24

MISSION COMPLETE
START AGAIN

PHASOR ROUTINE

INPUT PHASOR
ENERGY TO FIRE

4 - 25

DELETE v.. A.S. NO.1
ENERGY FROM

SP ACE SHIP SHIELDS

DELETE ',4 A.S. NO.2
ENERGY FROM

SPACE SHIP SHIELDS

DELETE v.. A.S. NO.3
ENERGY FROM

SPACE SHIP SHIELDS

STX PNTR3 Save pointer for ASPH routine
LDXPSLAS2 Pointer to alien ship no. 2 position
JSR ASPH Fire phasor at alien ship no. 2
LDX PVASE3 Fetch pointer to alien ship no. 3 energy
STXPNTR3 Save pointer for ASPH routine
LDXPSLAS3 Pointer to alien ship no. 3 position
JSRASPH Fire phasor at alien ship no. 3
BRACMNDl Input new command

ASPH STXPNTR2 Save position pointer
LDAAX Fetch alien ship location
BPL ASPHl Any alien ship in location?
RTS No, return

ASPHl LDX STORE4 Restore energy value
STX STOREl Move to temporary storage
LDX #$0465 Set up pointers
STXPNTRl To fill in alien ship location
LDXPNTR2 In message
JSRTWO Set sector coordinates
LDX #$044E Print 'ALIEN SHIP AT SECTOR X,Y:'
JSR MSG
LDX #SLOSS Fetch sector location of the space ship
BSR SPRC Separate row and column values
STAA STORE2 Save row of space ship
ST AA STORE2+$l Save column of space ship
LDXPNTR2 Fetch pointer to alien ship location
BSR SPRC Separate row and column values
SUBA STORE2 Create row difference
BPL PH2 Make absolute difference
NEGA By negating a negative value

PH2 SUBB STORE2+$l Create column difference
BPL PH3 Make absolute difference
NEGB By negating a negative value

PH3 ABA Add absolute differences
LSRA Divide by 4 to
LSRA Form the distance factor
ANDA .:#$03 Of energy to reach alien ship
TAB Store in B
BEQPH4 Make sure not zero
JSRDVD Calculate energy that reached alien ship

PH4 LDXPNTR3 Subtract from shield energy
JSRFMl Of alien ship
BMI DSTR If negative, alien ship is destroyed
BNE ALOS If non-zero, print alien ship energy
TSTX Alien ship energy = O?
BEQ DSTR Yes, remove from galaxy

ALOS LDAB -#$02 Set precision counter
JSRBINDEC Convert alien ship energy to decimal
LDX #$0477 Set digits in message

4 - 26

LDAB .:#$04
JSR DIGPRT
LDX #$046B
JSRMSG
LDXPNTR3
LDAAX
STAA STORE!
LDAA $O!,X
ST AA STORE! +$O!
LDAB #$02
JSR DVD
LDX STORE!
JMP ELOS

DSTR LDX #$03CA
JSR MSG
LDXPNTR2
JMP DLET

SPRC LDAAX
TAB
JSR ROTR3
ANDA #$07
ANDB -#$07
RTS

Set number of digits counter
Put digits in message
Print energy of alien ship

Set pointer to alien ship energy
Transfer alien ship energy
To STORE! for calculating
Retaliation amount

Divide energy by 4 as
Retaliation by alien ship
Place energy into index register
Remove from shield energy, return

Print 'DESTROYED'

Fetch alien ship location
Remove alien ship from galaxy, return

Fetch row and column byte
Save for column value
Position row to right
Mask ou t row value
Mask ou t column value
Return

4 - 27

6800 ASSEMBLED LISTING

This chapter contains the assembled listing for the 6800 Galaxy
program. The assembled listing provides the memory addresses and
machine code for the mnemonics which make up the Galaxy pro­
gram. All that is required is to add the reader provided I/O driver
routines for the specific devices available on one's system. These
routines must follow the guidelines described in Chapter Two. For
systems that use the MIKBUG** program for I/O, sample routines
for input and output via MIKBUG** are presented at the end of this
listing.

The first portion of the listing indicates the usage of page 00 for
the course table, temporary data storage, the galaxy display message,
and the galaxy content table. The galaxy display message on page 00,
the messages of page 01 through 04, and the galaxy setup table on
page OF are presented as octal dumps.

The start of execution address for the Galaxy program as pre­
sented herein is page 05 location 00.

0000 02 $02 Course 1.0
0001 00 $00
0002 02 $02 Course 1.5
0003 FF $FF'
0004 02 $02 Course 2.0
0005 FE $FE
0006 01 $01 Course 2.5
0007 FE $FE
0008 00 $00 Course 3.0
0009 FE $FE
OOOA FF $FF Course 3.5
OOOB FE $FE
OOOC FE $FE Course 4.0
OOOD FE $FE
OOOE FE $FE Course 4.5
OOOF FF $FF
0010 FE $FE Course 5.0
0011 00 $00
0012 FE $FE Course 5.5
0013 01 $01
0014 FE $FE Course 6.0
0015 02 $02
0016 FF $FF Course 6.5
0017 02 $02

5-1

0018 00 $00 Course 7.0
0019 02 $02
001A 01 $01 Course 7.5
OOlE 02 $02
001C 02 $02 Course 8.0
001D 02 $02
001E 02 $02 Course 8.5
001F 01 $01

0020 PNTR1 RMB $2 Temp pointer storage area
0022 PNTR2 RMB $2
0024 PNTR3 RMB$2

0026 STORE1 RMB$2 Temp data storage area
0028 STORE2 RMB$2
002A STORE3 RMB $2
002C STORE4 RMB $2
002E STORE5 RMB $2

0030 CNTR RMB $1 Temporary counter storage

0031 CI RMB $1 Crossing indicator
0032 CF RMB $1 Crossing flag
0033 RNM RMB $2 Random number storage
0035 CQC RMB $1 Current quadrant's contents
0036 SLOSS RMB $1 Sector location of space ship
0037 SOLSS RMB $7 Sector location of stars
003E SLSS RMB $1 Sector location of space station
003F SLAS1 RMB $1 Sect. loco of alien ship no. 1
0040 SLAS2 RMB $1 Sect. loco of alien ship no. 2
0041 SLAS3 RMB $1 Sect. loco of alien ship no. 3
0042 DVME RMB $2 Energy in main supply
0044 DVSE RMB $2 Energy in shields
0046 VASE1 RMB $2 Alien ship no. 1 energy
0048 VASE2 RMB $2 Alien ship no. 2 energy
004A VASE3 RMB $2 Alien ship no. 3 energy
004C CQLSS RMB $1 Quadrant loco of space ship
004D NTR RMB $1 Number of torpedoes
004E NSS RMB$l Number of space stations
004F NAS RMB $1 Number of alien ships
0050 NSR RMB $1 Number of star dates left
0051 DGT1ST RMB $1 Digit storage for
0052 DGT2ND RMB $1 Binary to decimal and
0053 DGT3RD RMB $1 Decimal to binary
0054 DGT4TH RMB$l Conversion
0055 DGT5TH RMB $1
0056 00 PSTR1 $00 Table of pointers
0057 26 $26 Used for loading
0058 00 PSTR51 $00 The index register
0059 2F $2F

5-2

005A 00 PSLOSS $00
005B 36 $36
005C 00 PSOLSS $00
005D 37 $37
005E 00 PSLSS $00
005F 3E $3E
0060 00 PSLASI $00
0061 3F $3F
0062 00 PSLAS2 $00
0063 40 $40
0064 00 PSLAS3 $00
0065 41 $41
0066 00 PDVME $00
0067 42 $42
0068 00 PDVSE $00
0069 44 $44
006A 00 PVASEI $00
006B 46 $46
006C 00 PVASE2 $00
006D 48 $48
006E 00 PVASE3 $00
006F 4A $4A
0070 00 PCQLSS $00
0071 4C $4C
0072 00 PDGIST $00
0073 51 $51
0074 00 PDG5TH $00
0075 55 $55

0080 8D 8A Bl AO BO BO BO AO
0088 Bl AO BO BO BO AO Bl AO
0090 BO BO BO AO Bl AO BO BO
0098 BO AO Bl AO BO BO BO AO
OOAO Bl AO BO BO BO AO Bl AO
00A8 BO BO BO AO Bl AO BO BO
OOBO BO AO Bl 00

OOCO through OOFF reserved for Galaxy Content Table

0100 8D 8A C4 CF AO D9 CF D5
0108 AO D7 Cl CE D4 AO D4 CF
0110 AO C7 CF AO CF CE AO Cl
0118 AO D3 DO Cl C3 C5 AO D6
0120 CF D9 Cl C7 C5 BF AO 00
0128 8D 8A D9 CF D5 AO CD D5
0130 D3 D4 AO C4 C5 D3 D4 D2
0138 CF D9 AO B2 B4 AO Cl CC

5-3

0140
0148
0150
0158
0160
0168
0170
0178
0180
0188
0190
0198
01AO
01A8
OlBO
OlB8
01CO
01C8
01DO
01D8

, OlEO
01E8
01FO
01F8
0200
0208
0210
0218
0220
0228
0230
0238
0240
0248
0250
0258
0260
0268
0270
0278
0280
0288
0290
0298
02AO
02A8
02BO
02B8
02CO
02C8
02DO

C9 C5 CE AO D3 C8 C9 DO
D3 AO C9 CE AO B2 B9 AO
D3 D4 C1 D2 C4 C1 D4 C5
D3 AO D7 C9 D4 C8 AO B5
AO D3 DO C1 C3 C5 AO D3
D4 C1 D4 C9 CF CE D3 00
8D 8A AO AD B1 AD AD B2
AD AD B3 AD AD B4 AD AD
B5 AD AD B6 AD AD B7 AD
AD B8 AD 00 8D 8A BS AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO 00
AO D3 D4 C1 D2 C4 C1 D4
C5 AO AO B3 BO B2 B1 00
AO C3 CF CE C4 C9 D4 C9
CF CE AO C7 D2 C5 C5 CE
00 AO D1 D5 C1 C4 D2 C1
CE D4 AO AO B5 AC BS 00
AO D3 C5 C3 D4 CF D2 AO
AO AO AO B6 AC B1 00 AO
C5 CE C5 D2 C7 D9 AO AO
AO AO B5 BO BO BO 00 AO
D4 CF D2 DO C5 C4 CF C5
D3 AO B1 BO 00 AO D3 CS
C9 C5 CC C4 D3 AO AO AO
BO BO BO BO 00 SD 8A C3
CF CD CD C1 CE C4 BF 00
SD SA C3 CF D5 D2 D3 C5
AO AS B1 AD BS AE B5 A9
BF AO 00 SD SA D7 C1 D2
DO AO C6 C1 C3 D4 CF D2
AO AS BO AE B1 AD B7 AE
B7 A9 BF AO 00 SD SA CC
AE D2 AE AO D3 C3 C1 CE
AO C6 CF D2 00 8D SA CD
C9 D3 D3 C9 CF CE AO C6
C1 C9 CC C5 C4 AC AO D9
CF D5 AO CS C1 D6 C5 AO
D2 D5 CE AO CF D5 D4 AO
CF C6 AO D3 D4 C1 D2 C4
C1 D4 C5 D3 00 SD SA CB
C1 AD C2 CF CF CD AC AO
D9 CF D5 AO C3 D2 C1 D3
CS C5 C4 AO C9 CE D4 CF
AO C1 AO D3 D4 C1 D2 AE
AO D9 CF D5 D2 AO D3 CS
C9 DO AO C9 D3 AO C4 C5
D3 D4 D2 CF D9 C5 C4 00
SD 8A D9 CF D5 AO CD CF
D6 C5 C4 AO CF D5 D4 AO

5-4

0208 CF C6 AO 04 C8 C5 AO C7
02EO C1 CC C1 08 09 AC AO 09
02E8 CF 05 02 AO 03 C8 C9 00
02FO AO C9 03 AO CC CF 03 04
02F8 AE AE CC CF 03 04 00 80
0300 8A CC CF 03 03 AO CF C6
0308 AO C5 CE C5 02 C7 09 AO
0310 BO B1 B2 B9 00 80 8A C4
0318 C1 CE C7 C5 02 AD 03 C8
0320 C9 C5 CC C4 AO C5 CE C5
0328 02 C7 09 AO BO BO BO 00
0330 80 8A 03 C8 C9 C5 CC C4
0338 AO C5 CE C5 02 C7 09 AO
0340 D4 02 C1 CE 03 C6 C5 02
0348 AO BO AO 00 80 8A CE CF
0350 04 AO C5 CE CF 05 C7 C8
0358 AO C5 CE C5 02 C7 09 00
0360 80 8A 04 CF 02 00 C5 C4
0368 CF AO 04 02 C1 CA C5 C3
0370 04 CF 02 09 A8 B1 .AO B8
0378 AE B5 A9 AO BA AO 00 80
0380 8A C1 CC C9 C5 CE AO 03
0388 C8 C9 00 AO C4 C5 03 04
0390 02 CF 09 C5 C4 00 80 8A
0398 09 CF 05 AO CO C9 03 03
03AO C5 C4 Al AO C1 CC C9 C5
03A8 CE AO 03 C8 C9 00 AO 02
03BO C5 04 C1 CC C9 C1 04 C5
03B8 03 00 80 8A 03 00 C1 C3
03CO C5 AO 03 04 C1 04 C9 CF
03C8 CE AO C4 C5 03 04 02 CF
0300 09 C5 C4 00 80 8A C3 CF
0308 CE C7 02 C1 04 05 CC C1
03EO 04 C9 CF CE 03 AC AO 09
03E8 CF 05 AO C8 C1 06 C5 AO
03FO C5 CC C9 CO C9 CE C1 04
03F8 C5 C4 AO C1 CC CC AO CF
0400 C6 AO 04 C8 C5 AO C1 CC
0408 C9 C5 CE AO 03 C8 C9 00
0410 D3 00 80 8A 04 02 C1 C3
0418 CB C9 CE C7 BA AO B3 AC
0420 B3 00 80 8A C7 C1 CC C1
0428 08 09 AO C4 C9 03 00 CC
0430 C1 09 00 80 8A 00 C8 C1
0438 03 CF 02 AO C5 CE C5 02
0440 C7 09 AO 04 CF AO C6 C9
0448 02 C5 AO BO AO 00 80 8A
0450 C1 CC C9 C5 CE AO 03 C8
0458 C9 00 AO C1 04 AO 03 C5
0460 C3 04 CF 02 AO B7 AC B8
0468 BA AO 00 C5 CE C5 02 C7

5-5

0470 D9 AO BD AO BO B5 B1 B8
0478 00 8D 8A CE CF AO C1 CC
0480 C9 C5 CE AO D3 C8 C9 DO
0488 D3 A1 AO D7 C1 D3 D4 C5
0490 C4 AO D3 C8 CF D4 00 8D
0498 8A C1 C2 C1 CE C4 CF CE
04AO AO D3 C8 C9 DO A1 AO CE
04A8 CF AO C5 CE C5 D2 C7 D9
04BO AO CC C5 C6 D4 00 8D 8A
04B8 CE CF AO D4 CF D2 DO C5
04CO C4 CF C5 D3 00 8D 8A B1
04C8 AO BO BO BO AO B1 AO BO
04DO BO B4 AO B1 AO BO BO BO
04D8 AO B1 00 8D 8A CC C1 D3
04EO D4 00 8D 8A C3 C8 C9 C3
04E8 CB C5 CE A1 00

0500 8E OE FF GALAXY LDS #$OEFF
0503 7E 09 72 JMP START

0506 A6 00 MSG LDAAX
0508 27 06 BEQ MSG1
050A BD OF CO JSR PRINT
050D 08 INX
050E 20 F6 BRAMSG
0510 39 MSG1 RTS

0511 47 ROTR4 ASRA
0512 47 ROTR3 ASRA
0513 47 ASRA
0514 47 ASRA
0515 39 RTS

0516 96 33 RN LDAARNM
0518 49 ROLA
0519 98 33 EORARNM
051B 46 RORA
051C 7C 00 34 INC RNM+$l
051F 9B 34 ADDA RNM+$l
0521 28 03 BVC SKIP
0523 7A 00 34 DEC RNM+$l
0526 97 33 SKIP STAARNM
0528 39 RTS

0529 DF 20 BINDEC STX PNTR1
052B DE 72 LDXPDG1ST
052D 6F 00 CLRX
052F 6F 01 CLR $Ol,X
0531 6F 02 CLR $02,X

5-6

0533 6F 03 CLR $03,X
0535 6F 04 CLR $04,X
0537 DE 20 LDXPNTRI
0539 A6 00 LDAAX
053B 5A DECB
053C 27 02 BEQBNDC
053E E6 01 LDAB $OI,X

0540 97 26 BNDC STAASTOREI
0542 D7 27 STAB STOREl+$1
0544 CE 10 27 LDX *$1027
0547 DF 28 STX STORE2
0549 8D 21 BSRBD
054B D7 55 STABDGT5TH
054D CE E8 03 LDX *$E803
0550 DF 28 STX STORE2
0552 8D 18 BSRBD
0554 D7 54 STABDGT4TH
0556 CE 64 00 LDX #$6400
0559 DF 28 STX STORE2
055B 8D OF BSRBD
055D D7 53 STABDGT3RD
055F 86 OA LDAA =IF$OA
0561 97 28 STAA STORE2
0563 8D 07 BSRBD
0565 D7 52 STABDGT2ND
0567 96 26 LDAASTOREI
0569 97 51 STAADGTlST
056B 39 RTS

056C 5F BD CLRB
056D 5C BDI INCB
056E 96 26 LDAASTOREI
0570 90 28 SUBA STORE2
0572 97 26 STAA STOREI
0574 96 27 LDAA STOREI +$1
0576 92 29 SBCA STORE2+$1
0578 97 27 ST AA STOREI +$1
057A 24 Fl BCCBDI
057C 96 26 LDAA STOREI
057E 9B 28 ADDASTORE2
0580 97 26 STAA STOREI
0582 96 27 LDAA STOREI +$1
0584 99 29 ADCA STORE2+$1
0586 97 27 STAA STOREI +$1
0588 5A DECB
0589 39 RTS

058A 7F 00 29 DCBN CLR STORE2+$1
058D 96 51 LDAADGTlST
058F 97 28 STAA STORE2

5-7

0591 D6 52 LDABDGT2ND
0593 27 07 BEQ DC1
0595 CE OA 00 LDX #$OAOO
0598 DF 26 STX STORE1
059A 8D 17 BSRTOBN
059C D6 53 DC1 LDABDGT3RD
059E 27 07 BEQ DC2
05AO CE 64 00 LDX 4F$6400
05A3 DF 26 STX STORE1
05A5 8D OC BSRTOBN
05A7 D6 54 DC2 LDAB DGT4TH
05A9 27 07 BEQDC3
05AB CE E8 03 LDX #$E803
05AE DF 26 STX STORE1
05BO 8D 01 BSRTOBN
05B2 39 DC3 RTS

05B3 CE 00 28 TOBN LDX =lFSTORE2
05B6 BD 08 02 JSR T01
05B9 5A DECB
05BA 26 F7 BNETOBN
05BC 39 RTS

05BD A6 00 FNUM LDAAX
05BF 81 BO CMPA ~$BO
05C1 2B 04 BMIFNUM1
05C3 80 BA SUBA r#$BA
05C5 8B 80 ADDA #$80
05C7 39 FNUM1 RTS

05C8 DE 5C NWQD LDXPSOLSS
05CA 86 CO LDAA 4F$CO
05CC C6 OB LDAB #$OB
05CE A7 00 CLR1 STAAX
05DO 08 INX
05D1 5A DECB
05D2 26 FA BNE CLR1

05D4 D6 35 LDAB CQC
05D6 C4 07 ANDB #$07
05D8 27 04 BEQ NWQD1
05DA DE 5C LDXPSOLSS
05DC 8D 31 BSR LOCSET

05DE 96 35 NWQD1 LDAACQC
05EO BD 05 12 JSR ROTR3
05E3 16 TAB
05E4 C4 01 ANDB -#$01
05E6 27 04 BEQNWDQ2
05E8 DE 5E LDX PSLSS
05EA 8D 23 BSR LOCSET

5-8

05EC 96 35 NWDQ2 LDAA CQC
05EE BD 05 11 JSR ROTR4
05F1 16 TAB
05F2 C4 03 AN DB #$03
05F4 27 16 BEQ LLAS
05F6 DE 60 LDXPSLAS1
05F8 8D 15 BSR LOCSET

05FA 8D 10 LDAS BSR LLAS
05FC DE 6A LDXPVASE1
05FE 8D 06 BSR LAS
0600 DE 6C LDX PVASE2
0602 8D 02 BSR LAS
0604 DE 6E LDXPVASE3

0606 A7 00 LAS STAAX
0608 84 03 ANDA *$03
060A A7 01 STAA $Ol,X
060C 7E 05 16 LLAS JMPRN

060F DF 20 LOCSET STX PNTR1
0611 8D F9 BSR LLAS
0613 84 3F ANDA 4F$3F
0615 8D OB BSRMATCH
0617 27 F8 BEQ LOCSET+$2
0619 DE 20 LDXPNTR1
061B A7 00 STAAX
0610 08 INX
061E 5A DECB
061F 26 EE BNE LOCSET
0621 39 RTS

0622 DE 5C MATCH LDXPSOLSS
0624 Al 00 MATCH2 CMPAX
0626 27 06 BEQMATCH1
0628 08 INX
0629 9C 66 CPXPDVME
062B 7E OE 82 JMPPATCH

062E 39 MATCH 1 RTS

062F 96 4C QCNT LDAACQLSS
0631 8A CO ORAA 4F$CO
0633 BD 09 51 JSRATINX1
0636 A6 00 LDAAX
0638 97 35 STAACQC
063A 39 RTS

063B CE 88 13 LOAD LDX :#:$8813
063E DF 42 STXDVME
0640 CE 00 00 LDX #$0000

5-9

0643 DF 44 STXDVSE
0645 86 OA LDAA :#:$OA
0647 97 4D STAANTR
0649 39 RTS

064A CE 02 5D TIME LDX =#=$025D

064D BD 05 06 DONE JSRMSG
0650 7E 09 72 JMPGALAXY

0653 CE 02 C8 LOST LDX *$02C8
0656 20 F5 BRA DONE

0658 CE 02 8D WPOUT LDX #$028D
065B 20 FO BRA DONE

065D CE 04 97 EOUT LDX 41'$0497
0660 20 EB BRA DONE

0662 DF 20 mGPRT STXPNTR1
0664 9F 22 STSPNTR2
0666 9E 20 LDSPNTR1
0668 DE 72 LDXPDG1ST
066A A6 00 DGPRT1 LDAAX
066C 08 INX
066D 8A BO ORAA :#=$BO
066F 36 PSHA
0670 5A DECB
0671 26 F7 BNE DGPRT1
0673 9E 22 LDSPNTR2
0675 39 RTS

0676 CE 01 8F ROWSET LDX 4t=-$018F
0679 86 AO LDAA #$AO
067B A7 00 RCLR STAAX
067D 08 INX
067E 8C 01 A7 CPX #$01A7
0681 26 F8 BNE RCLR

0683 17 TBA
0684 8A BO ORAA #$BO
0686 B7 01 8E STAA $018E
0689 5A DECB
068A DE 5A LDXPSLOSS
068C 8D 52 BSRRWPNT
068E 26 OC BNE STR
0690 86 BC LDAA #$BC
0692 A7 00 STAAX
0694 86 AA LDAA *$AA
0696 A7 01 STAA $Ol,X
0698 86 BE LDAA 4f$BE

5 - 10

069A A7 02 STAA $02,X

069C DE 5C STR LDX PSOLSS
069E DF 22 STXPNTR2
06AO 8D 3E STR1 BSR RWPNT
06A2 26 04 BNE NXSTR
06A4 86 AA LDAA #$AA
06A6 A7 01 STAA $01,X
06A8 7C 00 23 NXSTR INC PNTR2+$1
06AB DE 22 LDXPNTR2
06AD 9C 5E CPXPSLSS
06AF 26 EF BNE STR1

06B1 8D 2D BSRRWPNT
06B3 26 OC BNEAS
06B5 86 BE LDAA #$BE
06B7 A7 00 STAAX
06B9 86 B1 LDAA #$B1
06BB A7 01 STAA $01,X
06BD 86 BC LDAA #$BC
06BF A7 02 STAA $02,X
06C1 DE 60 AS LDXPSLAS1
06C3 DF 22 STXPNTR2
06C5 8D 19 AS1 BSRRWPNT
06C7 26 08 BNENXAS
06C9 86 AB LDAA #$AB
06CB A7 00 STAAX
06CD A7 01 STAA $01,X
06CF A7 02 STAA$02,X
06D1 7C 00 23 NXAS INC PNTR2+$1
06D4 DE 22 LDXPNTR2
06D6 9C 66 CPXPDVME
06D8 26 EB BNE AS1
06DA CE 01 8C LDX :fi.$018C
06DD 7E 05 06 JMPMSG

06EO A6 00 RWPNT LDAAX
06E2 2B 10 BMIRWPNT1
06E4 BD 05 12 JSRROTR3
06E7 84 07 ANDA :#:$07
06E9 11 CBA
06EA 26 15 BNERWPNT1
06EC A6 00 LDAAX
06EE 84 07 ANDA #$07
06FO 97 26 STAA STORE1
06F2 48 ASLA
06F3 9B 26 ADDASTORE1
06F5 8B 8F ADDA 4f$8F
06F7 7F 00 20 CLRPNTR1
06FA 7C 00 20 INCPNTR1
06FD BD 09 54 JSR ATINX

5 - 11

0700 4F CLRA
0701 39 RWPNTI RTS

0702 CE 01 D4 QUAD LDX #$0104
0705 DF 20 STX PNTRI
0707 CE 00 4C LDX #CQLSS
070A 8D 06 BSRTWO
070C CE 01 C9 LDX #$0IC9
070F 7E 05 06 JMPMSG

0712 A6 00 TWO LDAAX
0714 16 TAB
0715 DE 20 LDX PNTRI
0717 BD 05 12 Tl JSR ROTR3
071A 84 07 ANDA #$07
071C 8B Bl ADDA #$Bl
071E A7 00 STAAX
0720 C4 07 ANDB #$07
0722 CB Bl ADDB ;#$Bl
0724 E7 02 STAB $02,X
0726 39 RTS

0727 C6 13 NTN LDAB #$13
0729 86 8D NTI LDAA -#$8D
072B 8D OC BSR NT3
072D 86 8A LDAA -#$8A
072F 8D 08 BSR NT3
0731 86 AD NT2 LDAA '*$AD
0733 8D 04 BSRNT3
0735 5A DECB
0736 26 F9 BNE NT2
0738 39 RTS
0739 7E OF CO NT3 JMPPRINT

073C 16 QDSET TAB
073D BD 05 11 JSR ROTR4
0740 84 03 AND A 4/:$03
0742 8A BO ORAA #$BO
0744 A7 00 STAAX
0746 17 TBA
0747 BD 05 12 JSR ROTR3
074A 84 01 ANDA #$01
074C 8A BO ORAA #$BO
074E A7 01 STAA $OI,X
0750 C4 07 ANDB #$07
0752 CA BO ORAB -#$BO
0754 E7 02 STAB $02,X
0756 39 RTS

0757 4F CLCI CLRA
0758 20 14 BRA LR3

5 -12

075A 4F CLC2 CLRA
075B 20 2F BRALR4

075D 7E 09 51 LR5 JMP ATINXI
0760 8A CO LRR ORAA =#=$CO
0762 16 TAB
0763 97 26 STAA STOREI
0765 C4 07 ANDB #$07
0767 27 EE BEQ CLCI
0769 4A DECA
076A 8D Fl BSR LR5
076C A6 00 LDAAX
076E CE 04 C9 LR3 LDX 4F$04C9
0771 8D C9 BSR QDSET
0773 96 26 LDAASTOREI
0775 8D E6 BSR LR5
0777 A6 00 LDAAX
0779 CE 04 CF LDX :#$04CF
077C 8D BE BSR QDSET
077E 96 26 LDAASTOREI
0780 16 TAB
0781 C4 07 ANDB #$07
0783 Cl 07 CMPB *$07
0785 27 D3 BEQ CLC2
0787 4C INCA
0788 8D D3 BSR LR5
078A A6 00 LDAAX
078C CE 04 D5 LR4 LDX =iF$04D5
078F BD 07 3C JSR QDSET
0792 CE 04 C5 LRP LDX =IF$04C5
0795 7E 05 06 LR6 JMPMSG

0798 DF 2A ELOS STX STORE3
079A CE 00 2A LDX #STORE3
079D C6 02 LDAB -#$02
079F BD 05 29 JSR BINDEC
07A2 CE 03 ~.3 LDX #$0313
07A5 C6 04 LDAB :#$04
07A7 BD 06 62 JSR DIGPRT
07AA CE 02 FF LDX #$02FF
07AD 8D E6 BSR LR6
07AF DE 2A LDX STORE3
07Bl DF 26 STXSTOREI

07B3 8D 23 ELSI BSR CKSD
07B5 24 32 BCCFMSD
07B7 DE 44 SDOI LDXDVSE
07B9 DF 26 STX STOREI
07BB 8D 2C BSRFMSD

5 - 13

07BD 8D 41 BSRTOMN
07BF DE 2A LDX STORE3
07C1 DF 26 STX STORE1

07C3 8D 17 SDO BSRCKMN
07C5 25 53 BCSEOUT1
07C7 8D 24 BSR FMMN
07C9 CE 03 15 LDX #$0315
07CC 8D C7 BSR LR6
07CE C6 02 LDAB #$02
07DO 8D 3D BSRDVD
07D2 8D 08 BSRCKMN
07D4 25 44 BCSEOUT1
07D6 20 15 BRAFMMN

07D8 DE 68 CKSD LDXPDVSE
07DA 20 02 BRA CK1

07DC DE 66 CKMN LDXPDVME

07DE A6 01 CK1 LDAA $Ol,X
07EO 91 27 CMPA STORE1 +$1
07E2 26 35 BNE ELOS1
07E4 A6 00 CK2 LDAAX
07E6 91 26 CMPA STORE1
07E8 39 RTS

07E9 DE 68 FMSD LDXPDVSE
07EB 20 02 BRAFM1

07ED DE 66 FMMN LDXPDVME

07EF A6 00 FM1 LDAAX
07F1 90 26 SUBA STORE1
07F3 A7 00 STAAX
07F5 A6 01 LDAA $Ol,X
07F7 92 27 SBCA STORE1 +$1
07F9 A7 01 STAA $Ol,X
07FB 39 RTS

07FC DE 68 TOSD LDXPDVSE
07FE 20 02 BRA Tal

0800 DE 66 TOMN LDXPDVME
0802 A6 00 Tal LDAAX
0804 9B 26 ADDA STORE1
0806 A7 00 STAAX
0808 A6 01 LDAA $Ol,X
080A 99 27 ADCA STORE1 +$1
080C A7 01 STAA $Ol,X
080E 39 RTS

5 - 14

080F 5D DVD TSTB
0810 76 00 27 ROR STORE1+$1
0813 76 00 26 ROR STORE1
0816 5A DECB
0817 26 F6 BNEDVD
0819 39 ELOS1 RTS
081A 7E 06 5D EOUT1 JMPEOUT

08lD 8D BD ELOM BSR CKMN
081F 24 CC BCCFMMN
0821 DE 26 LDX STORE1
0823 DF 2A STX STORE3
0825 7E 07 B7 JMPSD01

0828 DE 74 EIN LDXPDG5TH
082A 6F 00 CLRX
082C BD OF 80 JSR INPUT
082F 81 AD CMPA #$AD
0831 26 05 BNE EN2
0833 A7 00 STAAX
0835 BD OF 80 EN1 JSR INPUT
0838 09 EN2 DEX
0839 A7 00 STAAX
083B BD 05 BD JSRFNUM
083E 2B OA BMIEIN1
0840 A6 00 LDAAX
0842 84 OF ANDA #$OF
0844 A7 00 STAAX
0846 9C 72 CPXPDG1ST
0848 26 EB BNE EN1
084A 39 EIN1 RTS

084B 86 CO DLET LDAA ;¥:$CO
084D A7 00 STAAX
084F DF 22 STXPNTR2
0851 96 4C LDAACQLSS
0853 8B CO ADDA -'ff$CO
0855 BD 09 51 JSR ATINX1
0858 DF 24 STX PNTR3
085A DE 22 LDXPNTR2
085C BD 09 59 JSRCOMPAR
085F 26 15 BNEDLAS
0861 DE 24 LDXPNTR3
0863 A6 00 LDAAX
0865 84 37 ANDA #$37
0867 A7 00 STAAX
0869 97 35 STAACQC
086B 7A 00 4E DECNSS
086E 26 1B BNE DLET1
0870 CE 04 DB LDX #$04DB
0873 7E 05 06 JMPMSG

5 - 15

0876 DE 24 DLAS LDXPNTR3
0878 A6 00 LDAAX
087A 80 10 SUBA #$10
087C A7 00 STAAX
087E 97 35 STAACQC
0880 7A 00 4F DEC NAS
0883 26 06 BNE DLETI
0885 CE 03 D4 LDX #$03D4
0888 7E 06 4D JMPDONE
088B 39 DLETI RTS

088C BD OF 80 DRCT JSR INPUT
088F 81 Bl CMPA 4I=$Bl
0891 25 25 BCSZRET
0893 81 B9 CMPA -#$B9
0895 24 21 BCC ZRET
0897 84 OF ANDA #$OF
0899 48 ASLA
089A 16 TAB
089B 86 AE LDAA 4F$AE
089D BD OF CO JSR PRINT
08AO BD OF 80 JSR INPUT
08A3 81 BO CMPA *$BO
08A5 27 04 BEQ CRI
08A7 81 B5 CMPA #$B5
08A9 26 OD BNE ZRET

08AB 84 01 CRI ANDA 41=$01
08AD 1B ABA
08AE 48 ASLA
08AF 80 04 SUBA -#$04
08Bl 97 21 STAA PNTRI +$1
08B3 4F CLRA
08B4 97 20 STAAPNTRI
08B6 4C INCA
08B7 39 RTS

08B8 4F ZRET CLRA
08B9 39 RTS

08BA 9F 22 ACTV STSPNTR2
08BC 9E 58 LDSPSTR51
08BE 96 36 LDAA SLOSS
08CO 16 TAB
08Cl C4 07 ANDB #$07
08C3 58 ASLB
08C4 37 PSHB
08C5 84 38 ANDA '#$38
08C7 44 LSRA
08C8 44 LSRA
08C9 36 PSHA

5 - 16

08CA DE 20 LDXPNTR1
08CC A6 00 LDAAX
08CE 36 PSHA
08CF A6 01 LDAA $Ol,X
08D1 36 PSHA
08D2 9E 22 LDSPNTR2
08D4 39 RTS

08D5 7F 00 32 TRK CLRCF
08D8 96 2F LDAA STORE5+$1
08DA 9B 2D ADDA STORE4+$1
08DC 97 2F ST AA STORE5+$1
08DE 2A 12 BPLNOBK
08EO 84 OF ANDA #$OF
08E2 97 2F STAA STORE5+$1
08E4 7C 00 32 INCCF

08E7 96 4C LDAACQLSS
08E9 84 07 ANDA =#=$07
08EB 27 56 BEQTRK1
08ED 7A 00 4C DEC CQLSS
08FO 20 17 BRARMV

08F2 81 10 NOBK CMPA #$10
08F4 25 13 BCSRMV
08F6 84 OF ANDA ~$OF
08F8 97 2F ST AA STORE5+$1
08FA 7C 00 32 INC CF

08FD 96 4C LDAACQLSS
08FF 84 07 ANDA 41=$07
0901 4C INCA
0902 81 08 CMPA :#0$08
0904 27 3D BEQ TRK1
0906 7C 00 4C INCCQLSS

0909 96 2E RMV LDAA STORE5
090B 9B 2C ADDA STORE4
090D 97 2E STAA STORE5
090F 2A 14 BPLNOUP
0911 84 OF ANDA .:iI=$OF
0913 97 2E STAA STORE5
0915 7C 00 32 INCCF
0918 96 4C LDAACQLSS
091A 16 TAB
091B 84 38 AND A #$38
0910 27 24 BEQTRK1
091F CO 08 SUBB #$08
0921 D7 4C STAB CQLSS
0923 20 1A BRA CKX

5-17

0925 81 10 NOUP CMPA :#:$10
0927 25 16 BCSCKX
0929 84 OF ANDA #$OF
092B 97 2E STAA STORE5
092D 7C 00 32 INCCF
0930 96 4C LDAACQLSS
0932 16 TAB
0933 84 38 ANDA ::#=$38
0935 8B 08 ADDA ::#=$08
0937 81 40 CMPA -#$40
0939 27 08 BEQTRK1
093B CB 08 ADDB -#$08
093D D7 4C STABCQLSS

093F 26 02 CKX BNE TRK1
0941 86 01 LDAA -#:$01
0943 39 TRK1 RTS

0944 96 2F RWCM LDAA STORE5+$1
0946 44 LSRA
0947 84 07 AND A ::#=$07
0949 D6 2E LDAB STORE5
094B 58 ASLB
094C 58 ASLB
094D C4 38 ANDB :#-$38
094F IB ABA
0950 39 RTS

0951 7F 00 20 ATINX1 CLR PNTR1
0954 97 21 ATINX STAA PNTR1+$1
0956 DE 20 LDXPNTR1
0958 39 RTS

0959 DF 20 COMPAR STXPNTR1
095B 96 21 LDAA PNTR1 +$1
095D 81 3E CMPA ::#=$3E
095F 39 RTS

0960 96 35 WASTE LDAACQC
0962 84 30 ANDA *$30
0964 27 01 BEQWASTE1
0966 39 RTS
0967 33 WASTEI PULB
0968 33 PULB
0969 CE 04 79 LDX :#:$0479
096C BD 05 06 JSR MSG
096F 7E OB 39 JMP CMND

0972 CE 01 00 START LDX #$0100
0975 BD 05 06 JSRMSG
0978 BD 05 16 JSRRN

5 -18

097B BD OF 80 JSR INPUT
097E 97 34 STAARNM+$l
0980 81 CE CMPA #$CE
0982 26 09 BNEOVER

0984 CE 04 E2 LDX :#$04E2
0987 BD 05 06 JSRMSG
098A 01 NOP
098B 01 NOP
098C 01 NOP

098D C6 CO OVER LDAB #=$CO
098F D7 26 STAB STORE1

0991 BD 05 16 GLXSET JSRRN
0994 84 7F ANDA #$7F
0996 C6 OF LDAB ':#$OF
0998 D7 20 STAB PNTR1
099A BD 09 54 JSR ATINX
099D E6 00 LDABX
099F 96 26 LDAASTORE1
09Al BD 09 51 JSR ATINX1
09A4 E7 00 STAB X
09A6 7C 00 26 INC STOREI
09A9 26 E6 BNEGLXSET

09AB 7F 00 4E GLXCK CLR NSS
09AE 7F 00 4F CLR NAS
09Bl CE 00 CO LDX =IF$OOCO

09B4 A6 00 GLXCKI LDAAX
09B6 16 TAB
09B7 84 08 ANDA #$08
09B9 9B 4E ADDANSS
09BB 97 4E STAA NSS
09BD C4 30 ANDB #$30
09BF 54 LSRB
09CO 54 LSRB
09C1 DB 4F ADDBNAS
09C3 D7 4F STABNAS
09C5 08 INX
09C6 8C 01 00 CPX #$0100
09C9 26 E9 BNEGLXCK1

09CB 96 4E LDAANSS
09CD 44 LSRA
09CE 44 LSRA
09CF 44 LSRA
09DO 97 4E STAA NSS
09D2 81 07 CMPA =11=$07
09D4 2A OA BPL SSPLS

5 - 19

09D6 81 02 CMPA :/1:$02
09D8 2A 33 BPLCAS

09DA C6 08 SSMNS LDAB #$08
09DC D7 26 STAB STOREI
09DE 20 IF BRAMNS

09EO C6 F7 SSPLS LDAB #$F7
09E2 D7 26 STAB STORE 1
09E4 20 04 BRAPLS
09E6 C6 CF ASPLS LDAB #$CF
09E8 D7 26 STAB STORE 1

09EA BD 05 16 PLS JSRRN
09ED 8A CO ORAA 4#=$CO
09EF BD 09 51 JSR ATINXI
09F2 96 26 LDAASTOREI
09F4 A4 00 ANDAX
09F6 A7 00 PLSI STAAX
09F8 7E 09 AB JMPGLXCK

09FB C6 10 ASMNS LDAB -#=$10
09FD D7 26 STAB STOREI

09FF BD 05 16 MNS JSRRN
OA02 8A CO ORAA .:/F$CO
OA04 BD 09 51 JSR ATINXI
OA07 96 26 LDAA STOREI
OA09 AA 00 ORAAX
OAOB 20 E9 BRA PLSI

OAOD 96 4F CAS LDAANAS
OAOF 44 LSRA
OAI0 44 LSRA
OAll 97 4F STAANAS
OA13 81 20 CMPA 4#=$20
OA15 2A CF BPL ASPLS
OA17 81 OA CMPA 4/:$OA
OA19 2B EO BMIASMNS
OAIB 86 05 LDAA :#=$05
OAID 9B 4F ADDANAS
OAIF 97 50 STAANSR
OA21 CE 00 50 LDX 4FNSR
OA24 C6 01 LDAB =#,$01
OA26 BD 05 29 JSR BINDEC
OA29 CE 01 4E LDX #$014E
OA2C C6 02 LDAB :#=$02
OA2E BD 06 62 JSR DIGPRT
OA31 CE 00 4F LDX =#=NAS
OA34 C6 01 LDAB #$01

5 - 20

OA36 BD 05 29 JSR BINDEC
OA39 CE 01 3C LDX #$013C
OA3C C6 02 LDAB #$02
OA3E BD 06 62 JSR DIGPRT
OA41 96 4E LDAANSS
OA43 8A BO ORAA :#$BO
OA45 B7 01 5F STAA $015F
OA48 CE 01 28 LDX #$0128
OA4B BD 05 06 JSRMSG
OA4E BD 05 16 JSRRN
OA51 84 3F ANDA 4I=$3F
OA53 97 4C STAA CQLSS
OA55 BD 06 2F JSRQCNT
OA58 BD 06 3B JSR LOAD
OA5B BD 05 C8 JSRNWQD
OA5E DE 5A LDXPSLOSS
OA60 C6 01 LDAB #$01
OA62 BD 06 OF JSR LOCSET

OA65 CE 01 70 SRSCN LDX #$0170
OA68 BD 05 06 JSR MSG
OA6B C6 01 LDAB #$01
OA6D BD 06 76 JSRROWSET
OA70 86 32 LDAA #$32
OA72 90 50 SUBANSR
OA74 97 26 STAA STOREI
OA76 DE 56 LDXPSTRI
OA78 C6 01 LDAB #$01
OA7A BD 05 29 JSR BINDEC
OA7D CE 01 B6 LDX #$0IB6
OA80 C6 02 LDAB #$02
OA82 BD 06 62 JSR DIGPRT
OA85 CE 01 A8 LDX #$0IA8
0A88 8D 24 BSR SRSCNI

OA8A C6 02 LDAB #$02
OA8C BD 06 76 JSR ROWSET
OA8F 96 35 LDAACQC
OA91 CE 01 C3 LDX #$0IC3
OA94 84 30 ANDA #$30
OA96 26 19 BNE RED
OA98 86 C7 LDAA =#:$C7
OA9A A7 00 STAAX
OA9C 86 D2 LDAA =#=$D2
OA9E A7 01 STAA $OI,X
OAAO 86 C5 LDAA :#:$C5
OAA2 A7 02 STAA $02,X
OAA4 86 C5 LDAA :#:$C5
OAA6 A7 03 STAA $03,X
OAA8 86 CE LDAA :/F$CE
OAAA A7 04 STAA $04,X

5 - 21

OAAC 20 11 BRACND
OAAE 7E 05 06 SRSCN1 JMPMSG

OAB1 86 D2 RED LDAA #$D2
OAB3 A7 00 STAAX
OAB5 86 C5 LDAA #$C5
OAB7 A7 01 STAA $Ol,X
OAB9 86 C4 LDAA #$C4
OABB A7 02 STAA $02,X
OABD 6F 03 CLR $03,X

OABF CE 01 B8 CND LDX #$01B8
OAC2 8D EA BSR SRSCN1

OAC4 C6 03 LDAB #$03
OAC6 BD 06 76 JSR ROWSET
OAC9 BD 07 02 JSRQUAD

OACC C6 04 LDAB #:$04
OACE BD 06 76 JSR ROWSET
OAD1 CE 01 E3 LDX #$01E3
OAD4 DF 20 STXPNTR1
OAD6 DE 5A LDXPSLOSS
OAD8 BD 07 12 JSRTWO
OADB CE 01 D8 LDX #$01D8
OADE 8D CE BSR SRSCN1

OAEO C6 05 LDAB 4/:$05
OAE2 BD 06 76 JSR ROWSET
OAE5 DE 66 LDXPDVME
OAE7 C6 02 LDAB :#$02
OAE9 BD 05 29 JSR BINDEC
OAEC CE 01 F5 LDX #$01F5
OAEF C6 04 LDAB #$04
OAF1 BD 06 62 JSR DIGPRT
OAF4 CE 01 E7 LDX #$01E7
OAF7 8D B5 BSR SRSCN1
OAF9 C6 06 LDAB :#:$06
OAFB BD 06 76 JSR ROWSET
OAFE CE 00 4D LDX #NTR
OB01 C6 01 LDAB #$01
OB03 BD 05 29 JSR BINDEC
OB06 CE 02 03 LDX #$0203
OB09 C6 02 LDAB =11'$02
OBOB BD 06 62 JSR DIGPRT
OBOE CE 01 F7 LDX 41$01F7
OB11 BD OA AE JSR SRSCN1

OB14 C6 07 LDAB #$07
OB16 BD 06 76 JSR ROWSET
OB19 DE 68 LDX PDVSE

5 - 22

OBIB C6 02 LDAB =1/:$02
OBlD BD 05 29 JSR BINDEC
OB20 CE 02 13 LDX #$0213
OB23 C6 04 LDAB #$04
OB25 BD 06 62 JSR DIGPRT
OB28 CE 02 05 LDX :#=$0205
OB2B BD 05 06 JSRMSG

OB2E C6 08 LDAB #$08
OB30 BD 06 76 JSRROWSET
OB33 CE 01 70 LDX #$0170
OB36 BD 05 06 JSR MSG

OB39 CE OA 00 CMND LDX :iI=-$OAOO
OB3C DF 26 STX STOREI
OB3E BD 08 lD JSRELOM
OB41 7A 00 34 DEC RNM+$1

OB44 CE 02 15 CMD LDX #$0215
OB47 BD 05 06 JSRMSG
OB4A BD OF 80 JSR INPUT

OB4D 81 BO CMPA #$BO
OB4F 26 03 BNENCRSE
OB51 7E OC 4C JMP CRSE
OB54 81 Bl NCRSE CMPA :#=$Bl
OB56 26 03 BNENSRSCN
OB58 7E OA 65 JMPSRSCN
OB5B 81 B2 NSRSCN CMPA :#=$B2
OB5D 26 03 BNENLRSCN
OB5F 7E OB 7E JMP LRSCN
OB62 81 B3 NLRSCN CMPA #$B3
OB64 26 03 BNE NGXPRT
OB66 7E OB D3 JMPGXPRT
OB69 81 B4 NGXPRT CMPA #$B4
OB6B 26 03 BNENSHEN
OB6D 7E OC 13 JMPSHEN
OB70 81 B5 NSHEN CMPA #$B5
OB72 26 03 BNENPHSR
OB74 7E OD B8 JMPPHSR
OB77 81 B6 NPHSR CMPA'iF$B6
OB79 26 C9 BNE CMD
OB7B 7E OD 32 JMPTRPD

OB7E CE 02 4D LRSCN LDX #$024D
OB81 BD 05 06 JSR MSG
OB84 BD 07 02 JSRQUAD
OB87 8D 25 BSR LRSCNI
OB89 96 4C LDAA CQLSS
OB8B 16 TAB
OB8C C4 38 ANDB :#=$38

5 - 23

OB8E 27 21, BEQ RWC1
OB90 80 08 SUBA :1/=$08
OB92 BD 07 60 JSR LRR

OB95 8D 17 LR1 BSR LRSCN1
OB97 96 4C LDAA CQLSS
OB99 BD 07 60 JSR LRR

OB9C 8D 10 BSR LRSCN1
OB9E 96 4C LDAA CQLSS
OBAO 81 38 CMPA #:$38
OBA2 24 12 BCC RWC2
OBA4 8B 08 ADDA #$08
OBA6 BD 07 60 JSR LRR
OBA9 8D 03 LR2 BSR LRSCN1
OBAB 7E OB 39 JMPCMND
OBAE 7E 07 27 LRSCN1 JMP NTN

OBB1 8D 08 RWC1 BSRRWC
OBB3 7E OB 95 JMPLR1

OBB6 8D 03 RWC2 BSRRWC
OBB8 7E OB A9 JMP LR2

OBBB CE 04 C9 RWC LDX 4F$04C9
OBBE 4F CLRA
OBBF BD 07 3C JSR QDSET
OBC2 CE 04 CF LDX *$04CF
OBC5 4F CLRA
OBC6 BD 07 3C JSR QDSET
OBC9 CE 04 D5 LDX =#=$04D5
OBCC 4F CLRA
OBCD BD 07 3C JSR QDSET
OBDO 7E 07 92 JMP LRP

OBD3 CE 04 22 GXPRT LDX *$0422
OBD6 BD 05 06 JSR MSG
OBD9 C6 31 LDAB #$31
OBDB BD 07 29 JSR NT1

OBDE CE 00 CO LDX #$OOCO
OBE1 DF 20 STX PNTR1
OBE3 CE 00 84 GL1 LDX #$0084
OBE6 DF 22 STX PNTR2
OBE8 DE 20 GL2 LDXPNTR1
OBEA 8C 01 00 CPX #$0100
OBED 27 21 BEQ GL3
OBEF A6 00 LDAAX
OBF1 08 INX
OBF2 DF 20 STXPNTR1
OBF4 DE 22 LDXPNTR2

5 - 24

OBF6 BD 07 3C JSR QDSET
OBF9 86 06 LDAA +$06
OBFB 9B 23 ADDA PNTR2+$1
OBFD 97 23 ST AA PNTR2+$1
OBFF 81 B4 CMPA #$B4
OC01 26 E5 BNEGL2

OC03 CE 00 80 LDX ~$0080
OC06 BD 05 06 JSR MSG
OC09 C6 31 LDAB :#=$31
OCOB BD 07 29 JSR NT1
OCOE 20 D3 BRAGL1

OC10 7E OB 39 GL3 JMPCMND

OC13 CE 03 30 SHEN LDX .:#=$0330
OC16 BD 05 06 JSRMSG
OC19 BD 08 28 JSR EIN
OC1C 2B F5 BMI SHEN

OClE BD 05 8A JSRDCBN
OC21 DE 28 LDXSTORE2
OC23 DF 26 STX STORE1
OC25 96 55 LDAADGT5TH
OC27 27 OD BEQPOS
OC29 BD 07 D8 JSR CKSD
OC2C 25 15 BCSNE
OC2E BD 07 E9 JSR FMSD
OC31 BD 08 00 JSRTOMN
OC34 20 13 BRA SHEN1

OC36 BD 07 DC POS JSR CKMN
OC39 25 08 BCSNE
OC3B BD 07 ED JSRFMMN
OC3E BD 07 FC JSRTOSD
OC41 20 06 BRA SHEN1

OC43 CE 03 4C NE LDX #$034C
OC46 BD 05 06 JSRMSG
OC49 7E OB 39 SHEN1 JMPCMND

OC4C CE 02 20 CRSE LDX .:#:$0220
OC4F BD 05 06 JSRMSG
OC52 BD 08 8C JSR DRCT
OC55 27 F5 BEQ CRSE

OC57 CE 02 33 WRP LDX #$0233
OCM BD 05 06 JSR MSG
OC5D BD OF 80 JSR INPUT
OC60 81 BO CMPA #$BO
OC62 25 F3 BCSWRP

5 - 25

OC64 81 B8 CMPA -#$B8
OC66 24 EF BCCWRP
OC68 84 07 ANDA *$07
OC6A 48 ASLA
OC6B 48 ASLA
OC6C 48 ASLA
OC6D 16 TAB
OC6E 86 AE LDAA 4F$AE
OC70 BD OF CO JSR PRINT
OC73 BD OF 80 JSR INPUT
OC76 81 BO CMPA #$BO
OC78 25 DD BCSWRP
OC7A 81 B8 CMPA 4/:$B8
OC7C 24 D9 BCCWRP
OC7E 84 07 ANDA =/F$07
OC80 IB ABA
OC81 27 D4 BEQWRP
OC83 97 30 STAACNTR
OC85 BD 08 BA JSR ACTV
OC88 7F 00 31 CLR CI

OC8B BD 08 D5 MOV JSRTRK
OC8E 26 03 BNEMOVI
OC90 7E 06 53 JMP LOST

OC93 96 32 MOVI LDAACF
OC95 27 10 BEQ CLSN
OC97 97 31 STAACI
OC99 CE 19 00 LDX #$1900
OC9C DF 26 STX STOREI
OC9E BD 08 ID JSR ELOM
OCAI BD 06 2F JSR QCNT
OCA4 BD 05 C8 JSR NWQD

OCA7 BD 09 44 CLSN JSR RWCM
OCAA BD 06 22 JSRMATCH
OCAD 26 OE BNEMVDN
OCAF BD 09 59 JSR COMPAR
OCB2 27 2D BEQ SSOUT
OCB4 24 43 BCC ASOUT
OCB6 96 31 LDAACI
OCB8 26 03 BNEMVDN
OCBA 7E 06 58 JMPWPOUT

OCBD 7A 00 30 MVDN DECCNTR
OCCO 26 C9 BNEMOV

OCC2 96 31 LDAA CI
OCC4 27 08 BEQNOX
OCC6 7A 00 50 DECNSR
OCC9 26 03 BNE NOX

5 - 26

OCCB 7E 06 4A JMPTIME

OCCE BD 09 44 NOX JSR RWCM
OCDI 97 36 STAA SLOSS
OCD3 BD 06 22 JSRMATCH
OCD6 26 03 BNENOXI
OCD8 BD OD OD JSRCHNG

OCDB BD OD 12 NOXI JSRDKED
OCDE 7E OA 65 JMP SRSCN

OCEI 96 31 SSOUT LDAA CI
OCE3 26 D8 BNEMVDN
OCE5 BD 08 4B JSR DLET
OCE8 CE 03 BA LDX #$03BA
OCEB BD 05 06 JSRMSG
OCEE CE 58 02 LDX :fF$5802
OCFl DF 26 STX STOREI
OCF3 BD 07 98 SSOI JSRELOS
OCF6 7E OC BD JMPMVDN

OCF9 96 31 ASOUT LDAACI
OCFB 26 CO BNEMVDN
OCFD BD 08 4B JSRDLET
ODOO CE 03 7F LDX 4F$037F
OD03 BD 05 06 JSRMSG
OD06 CE DC 05 LDX #$DC05
OD09 DF 26 STX STOREI
ODOB 20 E6 BRA SSOI

ODOD C6 01 CHNG LDAB *$01
ODOF 7E 06 OF JMP LOCSET

OD12 96 3E DKED LDAA SLSS
OD14 2A 01 BPL DKEDI
OD16 39 RTS

OD17 84 38 DKEDI ANDA #'$38
OD19 D6 36 LDAB SLOSS
ODIB C4 38 ANDB #$38
ODlD 11 CBA
ODIE 26 OE BNEDKED2
OD20 96 3E LDAA SLSS
OD22 D6 36 LDAB SLOSS
OD24 CB 01 ADDB 41:$01
OD26 11 CBA
OD27 27 06 BEQ DKED3
OD29 CO 02 SUBB -#$02
OD2B 11 CBA
OD2C 27 01 BEQDKED3
OD2E 39 DKED2 RTS

5 - 27

OD2F 7E 06 3B DKED3 JMP LOAD

OD32 96 4D TRPD LDAANTR
OD34 27 79 BEQ NTPD
OD36 7A 00 4D DECNTR
OD39 CE FA 00 LDX #$FAOO
OD3C DF 26 STX STOREI
OD3E BD 07 DC JSRCKMN
OD41 24 03 BCCTRPDl
OD43 7E OC 43 JMPNE

OD46 BD 07 ED TRPDl JSR FMMN

OD49 CE 03 60 TRI LDX *$0360
OD4C 8D 41 BSRTR3
OD4E BD 08 8C JSR DRCT
OD51 27 F6 BEQTRI
OD53 BD 08 BA JSR ACTV
OD56 96 4C LDAACQLSS
OD58 97 30 STAACNTR

OD5A BD 08 D5 TR2 JSRTRK
OD5D 27 3B BEQQOUT
OD5F 96 32 LDAACF
OD61 26 37 BNEQOUT
OD63 BD 09 44 JSR RWCM
OD66 16 TAB
OD67 97 26 STAA STOREI
OD69 CE 04 IE LDX #$041E
OD6C BD 07 17 JSRTI
OD6F CE 04 12 LDX ~$0412
OD72 8D IB BSRTR3
OD74 96 26 LDAA STOREI
OD76 BD 06 22 JSRMATCH
OD79 27 03 BEQ HIT
OD7B 7E OD 5A JMPTR2

OD7E BD 09 59 HIT JSR COMPAR
OD81 25 17 BCSQOUT
OD83 27 OD BEQ SSTA
OD85 BD 08 4B JSRDLET
OD88 CE 03 7F LDX ~$037F
OD8B 8D 02 BSRTR3
OD8D 20 26 BSR CMNDI
OD8F 7E 05 06 TR3 JMPMSG

OD92 BD 08 4B SSTA JSR DLET
OD95 CE 03 BA LDX *$03BA
OD98 8D F5 BSRTR3

OD9A 96 30 QOUT LDAACNTR

5 - 28

OD9C 97 4C STAA CQLSS
OD9E BD 09 60 JSR WASTE
ODA1 CE 03 96 LDX #$0396
ODA4 BD 05 06 JSR MSG
ODA7 CE C8 00 LDX #$C800
ODAA BD 07 98 JSR ELOS
ODAD 20 06 BRACMNDl

ODAF CE 04 B6 NTPD LDX #$04B6
ODB2 BD 05 06 JSR MSG
ODB5 7E OB 39 CMND1 JMPCMND

ODB8 CE 04 33 PHSR LDX 4#=$0433
ODBB 8D D2 BSRTR3
ODBD BD 08 28 JSR EIN
ODCO 2B F6 BMIPHSR
ODC2 BD 05 8A JSRDCBN
ODC5 DE 28 LDX STORE2
ODC7 DF 26 STX STOREl
ODC9 BD 08 10 JSRELOM
ODCC BD 09 60 JSR WASTE
ODCF BD 05 11 PHS1 JSR ROTR4
ODD2 80 01 SUBA*$Ol
ODD4 27 04 BEQ PHI
ODD6 16 TAB
ODD7 BD 08 OF JSRDVD

ODDA DE 26 PHI LDXSTORE1
ODDC DF 2C STX STORE4
ODDE DE 6A LDXPVASE1
ODEO DF 24 STX PNTR3
ODE2 DE 60 LDXPSLAS1
ODE4 BD OD FB JSR ASPH
ODE7 DE 6C LDXPVASE2
ODE9 DF 24 STXPNTR3
ODEB DE 62 LDXPSLAS2
ODED BD OD FB JSR ASPH
ODFO DE 6E LDXPVASE3
ODF2 DF 24 STXPNTR3
ODF4 DE 64 LDXPSLAS3
ODF6 BD OD FB JSR ASPH
ODF9 20 BA BRACMND1

ODFB DF 22 ASPH STXPNTR2
ODFD A6 00 LDAAX
ODFF 2A 01 BPL ASPH1
OE01 39 RTS
OE02 DE 2C ASPH1 LDXSTORE4
OE04 DF 26 STX STORE 1
OE06 CE 04 65 LDX #$0465
OE09 DF 20 STXPNTRl

5 - 29

OEOB DE 22 LDXPNTR2
OEOD BD 07 12 JSRTWO
OEI0 CE 04 4E LDX #$044E
OE13 BD 05 06 JSRMSG
OE16 CE 00 36 LDX #SLOSS
OE19 8D 5C BSR SPRC
OElB 97 28 STAA STORE2
OEID D7 29 STAB STORE2+$1
OEIF DE 22 LDXPNTR2
OE21 8D 54 BSR SPRC
OE23 90 28 SUB A STORE2
OE25 2A 01 BPL PH2
OE27 40 NEGA

OE28 DO 29 PH2 SUBB STORE2+$1
OE2A 2A 01 BPL PH3
OE2C 50 NEGB
OE2D IB PH3 ABA
OE2E 44 LSRA
OE2F 44 LSRA
OE30 84 03 ANDA #$03
OE32 16 TAB
OE33 27 03 BEQ PH4
OE35 BD 08 OF JSR DVD
OE38 DE 24 PH4 LDXPNTR3
OE3A BD 07 EF JSR FMl
OE3D 2B 2D BMIDSTR
OE3F 26 04 BNE ALOS
0:~41 6D 00 TST X
OE43 27 27 BEQ DSTR

OE45 C6 02 ALOS LDAB =#,$02
OE47 BD 05 29 JSR BINDEC
OE4A CE 04 77 LDX :/1=$0477
OE4D C6 04 LDAB #$04
OE4F BD 06 62 JSR DIGPRT
OE52 CE 04 6B LDX :/F$046B
OE55 BD 05 06 JSR MSG
OE58 DE 24 LDX PNTR3
OE5A A6 00 LDAAX
OE5C 97 26 STAA STOREI
OE5E A6 01 LDAA $OI,X
OE60 97 27 ST AA STOREI +$1
OE62 C6 02 LDAB :/1=$02
OE64 BD 08 OF JSR DVD
OE67 DE 26 LDX STOREI
OE69 7E 07 98 JMPELOS

OE6C CE 03 CA DSTR LDX 4F$03CA
OE6F BD 05 06 JSR MSG
OE72 DE 22 LDXPNTR2
OE74 7E 08 4B JMPDLET

5 - 30

OE77 A6 00 SPRC LDAAX
OE79 16 TAB
OE7A BD 05 12 JSR ROTR3
OE7D 84 07 ANDA =iF$07
OE7F C4 07 ANDB #$07
OE81 39 RTS

OE82 26 03 PATCH BNE PATCH1
OE84 08 INX
OE85 09 DEX
OE86 39 RTS
OE87 7E 06 24 PATCH1 JMP MATCH2

OFOO 00 01 04 23 OA 03 07 00
OF08 00 1A 23 05 03 14 16 12
OF10 00 00 00 00 00 05 04 17
OF18 05 01 14 00 00 04 05 00
OF20 07 02 11 09 00 04 00 00
OF28 23 00 02 24 00 00 03 07
OF30 00 15 00 05 OE 00 02 06
OF38 15 00 03 02 13 00 34 03
OF40 07 01 00 00 00 03 15 00
OF48 00 04 00 IF 04 01 03 02
OF50 03 14 00 00 00 16 OD 00
OF58 00 04 13 03 00 00 00 14
OF60 OB 01 15 13 00 00 00 03
OF68 07 00 00 00 1D 04 00 16
OF70 00 13 15 00 00 04 06 02
OF78 03 15 00 00 16 00 27 00

OF80 BD E1 AC INPUT JSR $E1AC
OF83 8A 80 ORAA #,$80
OF85 39 RTS

OFCO 36 PRINT PSHA
OFC1 BD E1 D1 JSR $EID1
OFC4 32 PULA
OFC5 39 RTS

5 - 31

SAMPLE OF GALAXY OPERATION

For those that may still be unsure of the operation of the Galaxy
game, the following sample illustrates the initial moves that may be
made in a typical game. The galaxy contents are assumed to be the
same as that displayed on page 1-8. All operator entries are under­
lined. The comments in the parentheses are included to point out
various facts one should watch as a game progresses, and to explain
the reasoning behind each of the moves. The Galaxy game is initiated
by jumping to the address 0500 hexadecimal.

DO YOU WANT TO GO ON A SPACE VOYAGE? 1:.

YOU MUST DESTROY 22 ALIEN SHIPS IN 27 STARDATES
WITH 4 SPACE STATIONS

-1--2--3--4--5--6--7--8-
1 *
2
3 +++
4 *
5 <*>
6
7 >1< *
8
-1--2--3--4--5--6--7--8-

STARDATE
CONDITION
QUADRANT
SECTOR
ENERGY
TORPEDOES
SHIELDS

3023
RED
6,5
5,3
5000
10
0000

(Before attacking the alien ship, energy should be transferred to the
protective shields.)

COMMAND? .!.

SHIELD ENERGY TRANSFER = 1000

6-1

(The alien ship is located three columns to the right and two rows
up. A torpedo trajectory of 1.5 just might make it.)

COMMAND? ..§..

TORPEDO TRAJECTORY: 1.5

TRACKING 4,4

TRACKING 4,5

TRACKING 3,6

ALIEN SHIP DESTROYED

(Good shot. Now, a short range scan will indicate the loss of the alien
ship and amount of energy remaining. The energy consumed was 10
units for each command entered plus 250 units to fire the torpedo.)

COMMAND? 1

-1--2--3--4--5--6--7--8-
1 *
2
3
4 *
5 <*>
6
7 >1< *
8
-1--2--3--4--5--6--7--8-

STARDATE
CONDITION
QUADRANT
SECTOR
ENERGY
TORPEDOES
SHIELDS

3023
GREEN
6,5
5,3
3720
09
1000

(Before leaving this quadrant, docking with the space station will
refill the energy banks and torpedo tubes.)

COMMAND? 0

COURSE (1 - 8.5)? 7.0

WARP FACTOR (0.1-7.7)? 0.2

6-2

-1--2--3--4--5--6--7--8-
1 *
2
3
4 *
5
6
7 <*»1< *
8
-1--2--3--4--5--6--7--8-

STAR DATE
CONDITION
QUADRANT
SECTOR
ENERGY
TORPEDOES
SHIELDS

3023
GREEN
6,5
7,3
5000
10
0000

(A long range scan will display the surrounding quadrants.)

COMMAND? .1.

LONG RANGE SCAN FOR QUADRANT 6,5

1 112 1 001 1 006 1

1 001 1 013 1 104 1

1 203 1 007 1 004 1

(Let's move into quadrant 7,4 to attack the two alien ships residing
there. The stardate will increase by one, and the new quadrant
location will be indicated. If the move is tracked one sector at a time
it would be noted that two quadrant borders were crossed, resulting
in the loss of 25 units of energy for each crossing.)

COMMAND? 0

COURSE (1 - 8.5)? 6.0

WARP FACTOR (0.1 - 7.7)? 1.0

6-3

-1--2--3--4--5--6--7--8-
1
2
3 +++
4 *
5
6 +++ *
7 * <*>
8
-1--2--3--4--5--6--7--8-

STARDATE
CONDITION
QUADRANT
SECTOR
ENERGY
TORPEDOES
SHIELDS

(Don't forget the shield energy before attacking.)

COMMAND? 4

SHIELD ENERGY TRANSFER = 1000

3024
RED
7,4
7,3
4930
10
0000

(The stars are blocking the path to both alien ships for the torpedoes.
Instead of maneuvering to a position to fire a torpedo at each, a
small phasor is fired to determine the size of the alien ships.)

COMMAND? 5

PHASOR ENERGY TO FIRE = 0100

ALIEN SHIP AT SECTOR 3,3: DESTROYED

ALIEN SHIP AT SECTOR 6,1: ENERGY = 0150

LOSS OF ENERGY 0037

(The alien ship at sector 3,3 was destroyed. The other alien ship fired
back in retaliation. However, since its shield energy is only 150, and
the distance factor (as defined on page 1 - 10) is zero, another phasor
shot should take care of it.)

COMMAND? 5

PHASOR ENERGY TO FIRE = 0150 -
6-4

ALIEN SHIP AT SECTOR 6,1: DESTROYED

(A short range scan will provide proof that the alien ships are des­
troyed, and also indicate how much energy is left.)

COMMAND? 1

-1--2--3--4--5--6--7--8-
1
2
3
4 *
5

6 *
7 * <*>
8
-1--2--3--4--5--6--7--8-

STARDATE
CONDITION
QUADRANT
SECTOR
ENERGY
TORPEDOES
SHIELDS

3024
GREEN
7,4
7,3
3640
10
0963

(The game would be continued by maneuvering about to the other
quadrants in the galaxy which contain alien ships. However, one
must always be aware of the amount of energy in the space ship, and
the number of stardates remaining as the game progresses. Allowing
either of these to run out would be as disasterous as moving out of
the known galaxy or making a fatal error such as the following
attempt to move to quadrant 5,4.)

COMMAND? 0

COURSE (1 - 8.5)'1 3.0

WARP FACTOR (0.1 -7.7)? 2.1

KA-BOOM, YOU CRASHED INTO A STAR.
YOUR SHIP IS DESTROYED.

6-5

NOTES

NOTES

PUBLICATIONS FROM SCELBI COMPUTER CONSULTING, INC.

AN '8080' ASSEMBLER PROGRAM $19.95

AN '8080' EDITOR PROGRAM $17.95

'8080' MONITOR ROUTINES $14.95

SCELBI'S GALAXY GAME FOR THE '8008/8080' $14.95

SCELBI'S GALAXY GAME FOR THE '6800' $14.95

SCELBI'S FIRST BOOK OF COMPUTER GAMES
FOR THE '8008/8080' $14.95

SCELBI '8080' SOFTWARE GOURMET GUIDE
AND COOK BOOK $ 9.95

SCELBI '6800' SOFTWARE GOURMET GUIDE
AND COOK BOOK $ 9.95

THE ABOVE PUBLICATIONS MAY BE ORDERED
DIRECTL Y FROM:

SCELBI COMPUTER CONSULTING, INC.
1322 Rear - Boston Post Road

Milford, CT 06460

	Front Cover

	Table of Contents

	Introduction

	Chapters

	Chapter 1 - Operation of the Galaxy Program

	Chapter 2 - System Requirements

	Chapter 3 - Data Table, Messages and Subroutines

	Chapter 4 - Major Routines of the Galaxy Program

	Chapter 5 - '6800' Assembled Listing

	Chapter 6 - Sample of Galaxy Operation

	Notes

	Publications from Scelbi Computer Consulting, Inc.

	Back Cover

